Skip to main content
Log in

Conservation, ex vitro direct regeneration, and genetic uniformity assessment of alginate-encapsulated nodal cuttings of Sphagneticola calendulacea (L.) Pruski

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A well-organized procedure was established for the conservation and distribution of Sphagneticola calendulacea (L.) Pruski [synonym Wedelia chinensis (Osbeck) Merrill] for the first time, using alginate-encapsulated nodal segments (NSs) as synthetic seeds. The ideal beads were obtained through a combination of 2.5% sodium alginate and 75 mM calcium chloride with 84.40 ± 2.20% rate of shoot emergence. The maximum regeneration (88.84 ± 2.24%) from synthetic seeds was achieved on liquid 1/2Murashige and Skoog (MS) medium in comparison to its other formulations. Furthermore, superior frequency (91.09 ± 2.24%) of complete plantlet (having both shoots and roots) formation was achieved when synthetic seeds were cultured on liquid 1/2MS (1.5% sucrose) fortified with 1.0 mg L−1 N6-benzyladenine plus 0.25 mg L−1 α-naphthalene acetic acid. Synthetic seeds could be effectively stored at low temperature (8 °C) up to 90 days with a survival rate of 52.38 ± 3.06%, whereas higher temperature (25 °C) did not support regeneration after 75 days of storage. The plantlets were successfully acclimatized to natural conditions with ~ 89% survival frequency. To by-pass the time-consuming in vitro culture step after encapsulation, synthetic seeds were directly regrown into complete plantlets ex vitro on sand, soil, and vermicompost (1:1:1; w/w). Regeneration rate of 42.22 ± 2.22% was attained when NSs were pretreated on 1/2MS medium containing 4.0 mg L−1 indole-3-acetic acid for 24 h in dark, prior to encapsulation. The random amplified polymorphic DNA and intersimple sequence repeat fingerprinting profiles demonstrated genetic uniformity amongst the regenerated plantlets, in vitro mother plant, as well as in vivo wild plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

N6-Benzyladenine

CC:

Calcium chloride

IBA:

Indole-3-butyric acid

LAF:

Laminar airflow

MS:

Murashige and Skoog medium

NAA:

α-Naphthalene acetic acid

NS:

Nodal segment

PGR:

Plant growth regulator

SA:

Sodium alginate

References

  • Adhikari S, Bandyopadhyay TK, Ghosh P (2014) Assessment of genetic stability of Cucumis sativus L. regenerated from encapsulated shoot tips. Sci Hortic 170:115–122

    Article  CAS  Google Scholar 

  • Ahmed MR, Anis M, Al-Etta HA (2015) Encapsulation technology for short-term storage and germplasm exchange of Vitex trifolia L. Rend Lincei 26(2):133–139

    Article  Google Scholar 

  • Alatar AA, Ahmad N, Javed SB, Abdel-Salam EM, Basahi R, Faisal M (2017) Two-way germination system of encapsulated clonal propagules of Vitex trifolia L.: an important medicinal plant. J Hortic Sci Biotechnol 92(2):175–182

    Article  CAS  Google Scholar 

  • Bianchetti RE, de Resende CF, Pacheco VS, Dornellas FF, de Oliveira AMS, Freitas JCE, Peixoto PHP (2017) An improved protocol for in vitro propagation of the medicinal plant Mimosa pudica L. Afr J Biotechnol 16(9):418–428

    Article  Google Scholar 

  • Brar DS, Jain SM (1998) Somaclonal variation: mechanism and applications in crop improvement. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer, Dordrecht, pp 15–24

    Chapter  Google Scholar 

  • Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb., a timber-yielding leguminous tree species. J Plant Physiol 161:237–243

    Article  CAS  PubMed  Google Scholar 

  • Cuesta C, Ordás RJ, Rodríguez A, Fernández B (2010) PCR-based molecular markers for assessment of somaclonal variation in Pinus pinea clones micro-propagated in vitro. Biol Plant 54:435–442

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica—an endangered medicinal plant. J Hortic Sci Biotechnol 82:351–354

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S (2017) Artificial seed technology for storage and exchange of plant genetic resources. In: Malik CP, Wani SH, Kushwaha HB, Kaur R (eds) Advanced technologies for crop improvement and agricultural productivity. Agrobios International, Jodhpur, pp 135–159

    Google Scholar 

  • Gantait S, Sinniah UR (2013) Storability, post-storage conversion and genetic stability assessment of alginate-encapsulated shoot tips of monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. Plant Biotechnol Rep 7:257–266

    Article  Google Scholar 

  • Gantait S, Bustam S, Sinniah UR (2012) Alginate-encapsulation, short-term storage and plant regeneration from protocorm-like bodies of Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. (Orchidaceae). Plant Growth Regul 68:303–311

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S, Ali MN (2015a) Influence of encapsulating agent and matrix levels on synseed production of Bacopa monnieri (L.) Pennell. Med Plants 7:182–187

    Google Scholar 

  • Gantait S, Kundu S, Ali N, Sahu NC (2015b) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37(5):1–12

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S, Yeasmin L, Ali MN (2017) Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. ex Kurz. J Appl Res Med Aromat Plants 4:75–81

    Google Scholar 

  • Ghanbarali S, Abdollahi MR, Zolnorian H, Moosavi SS, Seguí-Simarro JM (2016) Optimization of the conditions for production of synthetic seeds by encapsulation of axillary buds derived from minituber sprouts in potato (Solanum tuberosum). Plant Cell Tissue Organ Cult 126(3):449–458

    Article  CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34(1):117–128

    Article  CAS  Google Scholar 

  • Islam S, Banik H, Alam S, Tarek M, Rahman M (2009) In vitro Propagation of Holarrhena antidysenterica Wall., Wedelia chinensis (Osb.) Merr. And Woodfordia fruticosa (L.) Kurz. Plant Tissue Cult Biotechnol 19:253–255

    Google Scholar 

  • Koul S, Pandurangan A, Khosa RL (2012) Wedelia chinensis (Asteraceae)—an overview. Asian Pac J Trop Biomed 2:S1169–S1175

    Article  Google Scholar 

  • Kundu S, Salma U, Ali MN, Mandal N (2017) Factors influencing large scale micropropagation of Sphagneticola calendulacea (L.) Pruski and clonality assessment using RAPD and ISSR markers. In Vitro Cell Dev Biol Plant 53:167–177

    Article  CAS  Google Scholar 

  • Lata H, Chandra S, Khan IA, ElSohly MA (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L.—an important medicinal plant. Physiol Mol Biol Plants 15:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena AK, Rao MM, Meena RP, Panda P (2011) Pharmacological and phytochemical evidences for the plants of Wedelia genus—a review. Asian J Pharm Res 1:7–12

    Google Scholar 

  • Mehrotra S, Khwaja O, Kukreja AK, Rahman L (2012) ISSR and RAPD based evaluation of genetic stability of encapsulated micro shoots of Glycyrrhiza glabra following 6 months of storage. Mol Biotechnol 52(3):262–268

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–495

    Article  CAS  Google Scholar 

  • Murray M, Thopson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nower AA (2014) In vitro propagation and synthetic seeds production: an efficient method for Stevia rebaudiana Bertoni. Sugar Tech 16(1):100–108

    Article  CAS  Google Scholar 

  • Palanyandy SR, Gantait S, Suranthran P, Sinniah UR, Subramaniam S (2015) Storage of encapsulated oil palm polyembryoids: influence of temperature and duration. Vitro Cell Dev Biol Plant 51(1):118–124

    Article  Google Scholar 

  • Parveen S, Shahzad A (2014) Encapsulation of nodal segments of Cassia angustifolia Vahl. for short-term storage and germplasm exchange. Acta Physiol Plant 36(3):635–640

    Article  CAS  Google Scholar 

  • Rahman MM, Bhadra SK (2011) Development of protocol for in vitro culture and rapid propagation of Wedelia chinensis (Osbeek) Merr. J Med Plants Res 5:2387–2392

    CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118:33–38

    Article  CAS  Google Scholar 

  • Saha S, Sengupta C, Ghosh P (2014) Molecular and phytochemical analyses to assess genetic stability in alginate-encapsulated microshoots of Ocimum gratissimum L. following in vitro storage. Nucleus 57(1):33–43

    Article  Google Scholar 

  • Saha S, Sengupta C, Ghosh P (2015) Encapsulation, short-term storage, conservation and molecular analysis to assess genetic stability in alginate-encapsulated microshoots of Ocimum kilimandscharicum Guerke. Plant Cell Tissue Organ Cult 120(2):519–530

    Article  CAS  Google Scholar 

  • Sharma S, Shahzad A (2012) Encapsulation technology for short-term storage and conservation of a woody climber, Decalepis hamiltonii Wight and Arn. Plant Cell Tissue Organ Cult 111(2):191–198

    Article  CAS  Google Scholar 

  • Sharma S, Shahzad A, Kumar J, Anis M (2014) In vitro propagation and synseed production of scarlet salvia (Salvia splendens). Rend Fis Acc Lincei 25:359–368

    Article  Google Scholar 

  • Siddique I, Anis M (2009) Morphogenic response of the alginate encapsulated nodal segment and antioxidative enzymes analysis during acclimatization of Ocimum basilicum L. J Crop Sci Biotechnol 12(4):233–238

    Article  Google Scholar 

  • Singh AK, Sharma M, Varshney R, Agarwal SS, Bansal KC (2006) Plant regeneration from alginate to encapsulated shoot tips of Phyllanthus amarus Schum and Thonn, a medicinally important plant species. In Vitro Cell Dev Biol Plant 42:109–113

    Article  CAS  Google Scholar 

  • Singh SK, Rai MK, Asthana P, Pandey S, Jaiswal VS, Jaiswal U (2009) Plant regeneration from alginate encapsulated shoot tips of Spilanthes acmella L. Murr. A medicinally important and herbal pesticidal plant species. Acta Physiol Plant 31:649–653

    Article  CAS  Google Scholar 

  • Sundararaj SG, Agrawal A, Tyagi RK (2010) Encapsulation for in vitro short-term storage and exchange of ginger (Zingiber officinale Rosc.) germplasm. Sci Hortic 125(4):761–766

    Article  CAS  Google Scholar 

  • Suresh V, Kumar RM, Suresh A, Kumar NS, Arunachalam G, Umasankar K (2010) CNS activity of ethanol extract of Wedelia chinensis in experimental animals. Int J Pharm Sci Nanotechnol 3:881–886

    Google Scholar 

  • Verma SK, Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) In vitro plantlets from alginate-encapsulated shoot tips of Solanum nigrum L. Sci Hort 124:517–521

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the laboratory as well as library assistance from the Bidhan Chandra Krishi Viswavidyalaya, West Bengal, India. We further are thankful to the anonymous reviewers and the editor of this article for their critical comments and suggestions on the manuscript. The authors declare that there are no conflicts of interest. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabuddha Kundu.

Additional information

Communicated by E. Dziedzic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Salma, U., Ali, M.N. et al. Conservation, ex vitro direct regeneration, and genetic uniformity assessment of alginate-encapsulated nodal cuttings of Sphagneticola calendulacea (L.) Pruski. Acta Physiol Plant 40, 53 (2018). https://doi.org/10.1007/s11738-018-2633-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-018-2633-8

Keywords

Navigation