Skip to main content
Log in

Processing–Microstructure–Crystallographic Texture–Surface Property Relationships in Friction Stir Processing of Titanium

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) is a solid-state technique for microstructural modification of metallic materials. The aim of this work is to establish processing–microstructure–texture–surface properties relationship in commercially pure titanium (cp-Ti) processed by FSP under different processing conditions. The effect of processing conditions on the microstructural changes and the evolution of crystallographic texture is systematically studied. The changes in the chemical composition of the passive surface layer are characterized by x-ray photoelectron spectroscopy. The corrosion behavior of cp-Ti after FSP is evaluated in simulated body fluid and is related to the microstructure, texture and composition of passive layer. Substantial grain refinement was observed after FSP. Shear type deformation texture evolved during FSP with dynamic restoration processes weakening the overall shear texture. The corrosion resistance improved after processing at lower rotational speed due to the presence of basal planes at the surface and the incorporation of TiN in the passive layer. The results of this study suggest that surface properties of cp-Ti like passive layer and corrosion resistance are altered by FSP and can be controlled using appropriate processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39(3), p 642–658

    Article  Google Scholar 

  2. Z. Ma, F. Liu, and R. Mishra, Superplastic Deformation Mechanism of an Ultrafine-Grained Aluminum Alloy Produced by Friction Stir Processing, Acta Mater., 2010, 58(14), p 4693–4704

    Article  Google Scholar 

  3. E.A. El-Danaf, M.M. El-Rayes, and M.S. Soliman, Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility, Mater. Des., 2010, 31(3), p 1231–1236

    Article  Google Scholar 

  4. H. Fujii, Y. Sun, H. Kato, and K. Nakata, Investigation of Welding Parameter Dependent Microstructure and Mechanical Properties in Friction Stir Welded Pure Ti Joints, Mater. Sci. Eng. A, 2010, 527(15), p 3386–3391

    Article  Google Scholar 

  5. S. Mironov, Y. Sato, and H. Kokawa, Development of Grain Structure During Friction Stir Welding of Pure Titanium, Acta Mater., 2009, 57(15), p 4519–4528

    Article  Google Scholar 

  6. Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, and S. Hirano, Microstructural Characteristics and Mechanical Properties of Ti-6Al-4V Friction Stir Welds, Mater. Sci. Eng. A, 2008, 485(1), p 448–455

    Article  Google Scholar 

  7. A. Pilchak, M. Juhas, and J. Williams, Microstructural Changes Due to Friction Stir Processing of Investment-Cast Ti-6Al-4V, Metall. Mater. Trans. A, 2007, 38(2), p 401–408

    Article  Google Scholar 

  8. Z. Ma, A. Pilchak, M. Juhas, and J. Williams, Microstructural Refinement and Property Enhancement of Cast Light Alloys Via Friction Stir Processing, Scr. Mater., 2008, 58(5), p 361–366

    Article  Google Scholar 

  9. H. Farnoush, A.A. Bastami, A. Sadeghi, J.A. Mohandesi, and F. Moztarzadeh, Tribological and Corrosion Behavior of Friction Stir Processed Ti-CaP Nanocomposites in Simulated Body Fluid Solution, J. Mech. Behav. Biomed. Mater., 2013, 20, p 90–97

    Article  Google Scholar 

  10. H. Farnoush, A. Sadeghi, A.A. Bastami, F. Moztarzadeh, and J.A. Mohandesi, An Innovative Fabrication of Nano-HA Coatings on Ti-CaP Nanocomposite Layer Using a Combination of Friction Stir Processing and Electrophoretic Deposition, Ceram. Int., 2013, 39(2), p 1477–1483

    Article  Google Scholar 

  11. S. Mironov, Q. Yang, H. Takahashi, I. Takahashi, K. Okamoto, Y. Sato, and H. Kokawa, Specific Character of Material Flow in Near-Surface Layer During Friction Stir Processing of AZ31 Magnesium Alloy, Metall. Mater. Trans. A, 2010, 41(4), p 1016–1024

    Article  Google Scholar 

  12. S. Bahl, S. Suwas, and K. Chatterjee, The Importance of Crystallographic Texture in the Use of Titanium as an Orthopedic Biomaterial, RSC Adv., 2014, 4(72), p 38078–38087

    Article  Google Scholar 

  13. G. Wu, C. Shi, W. Sha, A. Sha, and H. Jiang, Effect of Microstructure on the Fatigue Properties of Ti-6Al-4V Titanium Alloys, Mater. Des., 2013, 46, p 668–674

    Article  Google Scholar 

  14. M. Hoseini, P. Bocher, A. Shahryari, F. Azari, J.A. Szpunar, and H. Vali, On the Importance of Crystallographic Texture in the Biocompatibility of Titanium Based Substrate, J. Biomed. Mater. Res. Part A, 2014, 102(10), p 3631–3638

    Article  Google Scholar 

  15. R. Kumari, T. Scharnweber, W. Pfleging, H. Besser, and J.D. Majumdar, Laser Surface Textured Titanium Alloy (Ti-6Al-4V)—Part II—Studies on Bio-Compatibility, Appl. Surf. Sci., 2015, 357, p 750–758

    Article  Google Scholar 

  16. W. Pfleging, R. Kumari, H. Besser, T. Scharnweber, and J.D. Majumdar, Laser Surface Textured Titanium Alloy (Ti-6Al-4V): Part 1—Surface Characterization, Appl. Surf. Sci., 2015, 355, p 104–111

    Article  Google Scholar 

  17. K.R. Seighalani, M.B. Givi, A. Nasiri, and P. Bahemmat, Investigations on the Effects of the Tool Material, Geometry, and Tilt Angle on Friction Stir Welding of Pure Titanium, J. Mater. Eng. Perform., 2010, 19(7), p 955–962

    Article  Google Scholar 

  18. I. Milošev, T. Kosec, and H.-H. Strehblow, XPS and EIS Study of the Passive Film Formed on Orthopaedic Ti-6Al-7Nb Alloy in Hank’s Physiological Solution, Electrochim. Acta, 2008, 53(9), p 3547–3558

    Article  Google Scholar 

  19. I. Milošv, H.H. Strehblow, B. Navinšek, and M. Metikoš-Huković, Electrochemical and Thermal Oxidation of TiN Coatings Studied by XPS, Surf. Interface Anal., 1995, 23(7–8), p 529–539

    Google Scholar 

  20. S. Bahl, S. Raj, S. Vanamali, S. Suwas, and K. Chatterjee, Effect of Boron Addition and Processing of Ti-6Al-4V on Corrosion Behaviour and Biocompatibility, Mater. Technol., 2014, 29(B1), p B64–B68

    Article  Google Scholar 

  21. I. Bertoti, M. Mohai, J. Sullivan, and S. Saied, Surface Characterisation of Plasma-Nitrided Titanium: An XPS Study, Appl. Surf. Sci., 1995, 84(4), p 357–371

    Article  Google Scholar 

  22. A. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48(7), p 1696–1720

    Article  Google Scholar 

  23. N. Gurao, R. Kapoor, and S. Suwas, Deformation Behaviour of Commercially Pure Titanium at Extreme Strain Rates, Acta Mater., 2011, 59(9), p 3431–3446

    Article  Google Scholar 

  24. M. Yoo, J. Morris, K. Ho, and S. Agnew, Nonbasal Deformation Modes of HCP Metals and Alloys: Role of Dislocation Source and Mobility, Metall. Mater. Trans. A, 2002, 33(3), p 813–822

    Article  Google Scholar 

  25. Z. Zeng, Y. Zhang, and S. Jonsson, Deformation Behaviour of Commercially Pure Titanium During Simple Hot Compression, Mater. Des., 2009, 30(8), p 3105–3111

    Article  Google Scholar 

  26. Y. Chen, Y. Li, J. Walmsley, S. Dumoulin, S. Gireesh, S. Armada, P. Skaret, and H. Roven, Quantitative Analysis of Grain Refinement in Titanium During Equal Channel Angular Pressing, Scr. Mater., 2011, 64(9), p 904–907

    Article  Google Scholar 

  27. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic Recrystallization Mechanisms Operating in a Ni-20% Cr Alloy Under Hot-To-Warm Working, Acta Mater., 2010, 58(10), p 3624–3632

    Article  Google Scholar 

  28. C. Castan, F. Montheillet, and A. Perlade, Dynamic Recrystallization Mechanisms of an Fe-8% Al Low Density Steel Under Hot Rolling Conditions, Scr. Mater., 2013, 68(6), p 360–364

    Article  Google Scholar 

  29. D. He, J. Zhu, Z. Lai, Y. Liu, and X. Yang, An Experimental Study of Deformation Mechanism and Microstructure Evolution During Hot Deformation of Ti-6Al-2Zr-1Mo-1V Alloy, Mater. Des., 2013, 46, p 38–48

    Article  Google Scholar 

  30. C. Chang, C. Lee, and J. Huang, Relationship Between Grain Size and Zener–Holloman Parameter During Friction Stir Processing in AZ31Mg Alloys, Scr. Mater., 2004, 51(6), p 509–514

    Article  Google Scholar 

  31. Y.S. Sato, H. Kokawa, K. Ikeda, M. Enomoto, T. Hashimoto, and S. Jogan, Microtexture in the Friction-Stir Weld of an Aluminum Alloy, Metall. Mater. Trans. A, 2001, 32(4), p 941–948

    Article  Google Scholar 

  32. D.P. Field, T.W. Nelson, Y. Hovanski, and K.V. Jata, Heterogeneity of Crystallographic Texture in Friction Stir Welds of Aluminum, Metall. Mater. Trans. A, 2001, 32(11), p 2869–2877

    Article  Google Scholar 

  33. S.H.C. Park, Y.S. Sato, and H. Kokawa, Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy, Metall. Mater. Trans. A, 2003, 34(4), p 987–994

    Article  Google Scholar 

  34. B. Beausir, L.S. Tóth, and K.W. Neale, Ideal Orientations and Persistence Characteristics of Hexagonal Close Packed Crystals in Simple Shear, Acta Mater., 2007, 55(8), p 2695–2705

    Article  Google Scholar 

  35. S. Suwas, B. Beausir, L. Tóth, J.-J. Fundenberger, and G. Gottstein, Texture Evolution in Commercially Pure Titanium After Warm Equal Channel Angular Extrusion, Acta Mater., 2011, 59(3), p 1121–1133

    Article  Google Scholar 

  36. T. Sundararajan, U. Kamachi Mudali, K. Nair, S. Rajeswari, and M. Subbaiyan, Surface Characterization of Electrochemically Formed Passive Film on Nitrogen ion Implanted Ti6Al4V Alloy, Mater. Trans. JIM, 1998, 39(7), p 756–761

    Article  Google Scholar 

  37. A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Production of In Situ Hard Ti/TiN Composite Surface Layers on CP-Ti Using Reactive Friction Stir Processing Under Nitrogen Environment, Surf. Coat. Technol., 2013, 218, p 62–70

    Article  Google Scholar 

  38. B. Li, Y. Shen, and W. Hu, Surface Nitriding on Ti-6Al-4V Alloy Via Friction Stir Processing Method Under Nitrogen Atmosphere, Appl. Surf. Sci., 2013, 274, p 356–364

    Article  Google Scholar 

  39. R.P. van Hove, I.N. Sierevelt, B.J. van Royen, P.A. Nolte, Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature, BioMed Res. Int., 2015, 2015, p 485975

    Google Scholar 

  40. S. Bahl, S. Suwas, and K. Chatterjee, The Control of Crystallographic Texture in the Use of Magnesium as a Resorbable Biomaterial, RSC Adv., 2014, 4(99), p 55677–55684

    Article  Google Scholar 

  41. L. Thair, U.K. Mudali, N. Bhuvaneswaran, K. Nair, R. Asokamani, and B. Raj, Nitrogen Ion Implantation and In Vitro Corrosion Behavior of As-Cast Ti-6Al-7Nb Alloy, Corros. Sci., 2002, 44(11), p 2439–2457

    Article  Google Scholar 

  42. S. Tamilselvi, V. Raman, and N. Rajendran, Corrosion Behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI, Alloys in the Simulated Body Fluid Solution by Electrochemical Impedance Spectroscopy, Electrochim. Acta, 2006, 52(3), p 839–846

    Article  Google Scholar 

  43. C. Fonseca and M. Barbosa, Corrosion Behaviour of Titanium in Biofluids Containing H2O2 Studied by Electrochemical Impedance Spectroscopy, Corros. Sci., 2001, 43(3), p 547–559

    Article  Google Scholar 

  44. A. Fekry and R.M. El-Sherif, Electrochemical Corrosion Behavior of Magnesium and Titanium Alloys in Simulated Body Fluid, Electrochim. Acta, 2009, 54(28), p 7280–7285

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Department of Science and Technology (DST), India for the financial support for the work. K.C. acknowledges Ramanujan fellowship from DST. Authors thank AFMM, IISc for access to equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahl, S., Nithilaksh, P.L., Suwas, S. et al. Processing–Microstructure–Crystallographic Texture–Surface Property Relationships in Friction Stir Processing of Titanium. J. of Materi Eng and Perform 26, 4206–4216 (2017). https://doi.org/10.1007/s11665-017-2865-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2865-6

Keywords

Navigation