Skip to main content
Log in

Surface Modification of a Cold Gas Dynamic Spray-Deposited Titanium Coating on Aluminum Alloy by using Friction-Stir Processing

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this research, the parameters of the cold spray process were initially assessed for deposition of a pure titanium coating layer with the thickness in the range of 800-850 µm on an AA5083 alloy substrate. Thereafter, to enhance the structural integrity of Ti-coating layer and decrease the coating porosity, friction-stir processing was employed as a post-modification technique by using a flat cylindrical tungsten carbide tool. The plunge depth of the friction-stir tool (in the range of 0.3-0.5 mm) was found to significantly affect the densification of the porous titanium coating layer. Optical microscopy, field emission-scanning electron microscopy, electron backscattering diffraction, transmission electron microscopy analysis and indentation Vickers micro-hardness testing were conducted on the thickness cross-sections of cold-sprayed coatings to characterize the microstructural features and mechanical properties before and after friction-stir modification performed using two different plunge depths. Furthermore, residual stress profiles on the surface were determined by using x-ray diffraction analysis technique. Significant grain refinement, from an initial cold-sprayed coating grain size of less than 25 µm to grain sizes < 1 µm, was observed across the thickness section of modified samples with a gradient profile from the coating surface toward the interface depending on the plunge depth. After friction-stir processing, the hardness of a thin layer close to the surface of coating increased up to seven times higher as compared to the cold-sprayed material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395. https://doi.org/10.1179/1743294414y.0000000270

    Article  Google Scholar 

  2. H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, Cold Spraying: A Materials Perspective, Acta Mater., 2016, 116(Supplement C), p 382-407. https://doi.org/10.1016/j.actamat.2016.06.034

    Article  Google Scholar 

  3. T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, From Particle Acceleration to Impact and Bonding in Cold Spraying, J. Therm. Spray Technol., 2009, 18(5), p 794. https://doi.org/10.1007/s11666-009-9357-7

    Article  Google Scholar 

  4. C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, Microstructural and Macroscopic Properties of Cold Sprayed Copper Coatings, J. Appl. Phys., 2003, 93(12), p 10064-10070. https://doi.org/10.1063/1.1573740

    Article  Google Scholar 

  5. B. Marzbanrad, H. Jahed, and E. Toyserkani, On the Evolution of Substrate’s Residual Stress During Cold Spray Process: A Parametric Study, Mater. Des., 2018, 138, p 90-102. https://doi.org/10.1016/j.matdes.2017.10.062

    Article  Google Scholar 

  6. P.D. Eason, S.C. Kennett, T.J. Eden, I. Krull, B. Kowalski, and J.L. Jones, In Situ Observation Of Microstrain Relief in Cold-Sprayed Bulk Copper During Thermal Annealing, Scr. Mater., 2012, 67(9), p 791-794. https://doi.org/10.1016/j.scriptamat.2012.07.029

    Article  Google Scholar 

  7. S. Kumar, A. Jyothirmayi, N. Wasekar, and S.V. Joshi, Influence of Annealing on Mechanical and Electrochemical Properties of Cold Sprayed Niobium Coatings, Surf. Coat. Technol., 2016, 296, p 124-135. https://doi.org/10.1016/j.surfcoat.2016.04.027

    Article  Google Scholar 

  8. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341(1-2), p 307-310. https://doi.org/10.1016/S0921-5093(02)00199-5

    Article  Google Scholar 

  9. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1-2), p 1-78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  10. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding: Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980-1023. https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  Google Scholar 

  11. T.R. McNelley, S. Swaminathan, and J.Q. Su, Recrystallization Mechanisms During Friction Stir Welding/Processing of Aluminum Alloys, Scr. Mater., 2008, 58(5), p 349-354. https://doi.org/10.1016/j.scriptamat.2007.09.064

    Article  Google Scholar 

  12. F. Khodabakhshi, A. Simchi, A.H. Kokabi, A.P. Gerlich, and M. Nosko, Effects of Stored Strain Energy on Restoration Mechanisms and Texture Components in an Aluminum-Magnesium Alloy Prepared by Friction Stir Processing, Mater. Sci. Eng. A, 2015, 642, p 204-214. https://doi.org/10.1016/j.msea.2015.07.001

    Article  Google Scholar 

  13. K.J. Hodder, H. Izadi, A.G. McDonald, and A.P. Gerlich, Fabrication of Aluminum-Alumina Metal Matrix Composites via Cold Gas Dynamic Spraying at Low Pressure Followed by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 556, p 114-121. https://doi.org/10.1016/j.msea.2012.06.066

    Article  Google Scholar 

  14. H. Ashrafizadeh, A. Lopera-Valle, A. McDonald, and A. Gerlich, Effect of Friction-Stir Processing on the Wear Rate of WC-Based MMC Coatings Deposited by Low-Pressure Cold Gas Dynamic Spraying. Proceedings of the International Thermal Spray Conference, 2015, p 41-47.

  15. C. Huang, W. Li, Z. Zhang, M. Fu, M.P. Planche, H. Liao, and G. Montavon, Modification of a Cold Sprayed SiCp/Al5056 Composite Coating by Friction Stir Processing, Surf. Coat. Technol., 2016, 296(Supplement C), p 69-75. https://doi.org/10.1016/j.surfcoat.2016.04.016

    Article  Google Scholar 

  16. C. Huang, W. Li, Z. Zhang, M.P. Planche, H. Liao, and G. Montavon, Effect of Tool Rotation Speed on Microstructure and Microhardness of Friction-Stir-Processed Cold-Sprayed SiCp/Al5056 Composite Coating, J. Therm. Spray Technol., 2016, 25(7), p 1357-1364. https://doi.org/10.1007/s11666-016-0441-5

    Article  Google Scholar 

  17. T. Peat, A. Galloway, A. Toumpis, P. McNutt, and N. Iqbal, The Erosion Performance of Cold Spray Deposited Metal Matrix Composite Coatings with Subsequent Friction Stir Processing, Appl. Surf. Sci., 2017, 396, p 1635-1648. https://doi.org/10.1016/j.apsusc.2016.10.156

    Article  Google Scholar 

  18. T. Peat, A. Galloway, A. Toumpis, R. Steel, W. Zhu, and N. Iqbal, Enhanced Erosion Performance of Cold Spray Co-deposited AISI316 MMCs Modified by Friction Stir Processing, Mater. Des., 2017, 120, p 22-35. https://doi.org/10.1016/j.matdes.2017.01.099

    Article  Google Scholar 

  19. C. Huang, W. Li, Y. Feng, Y. Xie, M.P. Planche, H. Liao, and G. Montavon, Microstructural Evolution and Mechanical Properties Enhancement of a Cold-Sprayed CuZn Alloy Coating with Friction Stir Processing, Mater. Charact., 2017, 125, p 76-82. https://doi.org/10.1016/j.matchar.2017.01.027

    Article  Google Scholar 

  20. F. Khodabakhshi, B. Marzbanrad, L.H. Shah, H. Jahed, and A.P. Gerlich, Friction-Stir Processing of a Cold Sprayed AA7075 Coating Layer on the AZ31B Substrate: Structural Homogeneity, Microstructures and Hardness, Surf. Coat. Technol., 2017, 331(Supplement C), p 116-128. https://doi.org/10.1016/j.surfcoat.2017.10.060

    Article  Google Scholar 

  21. F. Khodabakhshi, B. Marzbanrad, H. Jahed, and A.P. Gerlich, Interfacial Bonding Mechanisms Between Aluminum and Titanium During Cold Gas Spraying Followed by Friction-Stir Modification, Appl. Surf. Sci., 2018, 462, p 739-752. https://doi.org/10.1016/j.apsusc.2018.08.156

    Article  Google Scholar 

  22. ASTM E384-17: Standard Test Method for Microindentation Hardness of Materials.

  23. M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, T.D. Phan, M. Jahedi, and R. Nagarajah, Application of a Holistic 3D Model to Estimate State of Cold Spray Titanium Particles, Mater. Des., 2016, 89, p 1227-1241. https://doi.org/10.1016/j.matdes.2015.10.075

    Article  Google Scholar 

  24. F. Khodabakhshi, A. Simchi, A.H. Kokabi, P. Švec, F. Simančík, and A.P. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215-229. https://doi.org/10.1016/j.msea.2015.06.081

    Article  Google Scholar 

  25. A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Production of In Situ Hard Ti/TiN Composite Surface Layers on CP-Ti Using Reactive Friction Stir Processing Under Nitrogen Environment, Surf. Coat. Technol., 2013, 218, p 62-70. https://doi.org/10.1016/j.surfcoat.2012.12.028

    Article  Google Scholar 

  26. P.D. Edwards and M. Ramulu, Investigation of Microstructure, Surface and Subsurface Characteristics in Titanium Alloy Friction Stir Welds of Varied Thicknesses, Sci. Technol. Weld. Join., 2009, 14(5), p 476-483. https://doi.org/10.1179/136217109X425838

    Article  Google Scholar 

  27. A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, The Effects of Friction-Stir Process Parameters on the Fabrication of Ti/SiC Nano-composite Surface Layer, Surf. Coat. Technol., 2011, 206(6), p 1372-1381. https://doi.org/10.1016/j.surfcoat.2011.08.065

    Article  Google Scholar 

  28. S.B. Dayani, S.K. Shaha, R. Ghelichi, J.F. Wang, and H. Jahed, The Impact of AA7075 Cold Spray Coating on the Fatigue Life of AZ31B Cast Alloy, Surf. Coat. Technol., 2018, 337, p 150-158. https://doi.org/10.1016/j.surfcoat.2018.01.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Khodabakhshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5171 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodabakhshi, F., Marzbanrad, B., Shah, L.H. et al. Surface Modification of a Cold Gas Dynamic Spray-Deposited Titanium Coating on Aluminum Alloy by using Friction-Stir Processing. J Therm Spray Tech 28, 1185–1198 (2019). https://doi.org/10.1007/s11666-019-00902-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00902-z

Keywords

Navigation