Skip to main content
Log in

Positive-instantaneous frequency and approximation

  • Survey Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Positive-instantaneous frequency representation for transient signals has always been a great concern due to its theoretical and practical importance, although the involved concept itself is paradoxical. The desire and practice of uniqueness of such frequency representation (decomposition) raise the related topics in approximation. During approximately the last two decades there has formulated a signal decomposition and reconstruction method rooted in harmonic and complex analysis giving rise to the desired signal representations. The method decomposes any signal into a few basic signals that possess positive instantaneous frequencies. The theory has profound relations to classical mathematics and can be generalized to signals defined in higher dimensional manifolds with vector and matrix values, and in particular, promotes kernel approximation for multi-variate functions. This article mainly serves as a survey. It also gives two important technical proofs of which one for a general convergence result (Theorem 3.4), and the other for necessity of multiple kernel (Lemma 3.7).

Expositorily, for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f. Such function F has the form F = f + iH f, where H stands for the Hilbert transformation of the context. We develop fast converging expansions of F in orthogonal terms of the form

$$F = \sum\limits_{k = 1}^\infty {{c_k}{B_k},} $$

where Bk’s are also Hardy space functions but with the additional properties

$${B_k}(t) = {\rho _k}(t){e^{i{\theta _k}(t)}},\,\,\,\,\,\,{\rho _k} \geqslant 0,\,\,\,\,\,\,\,\theta _k^\prime (t) \geqslant 0,\,\,\,\,\,\,{\rm{a}}.{\rm{e}}.$$

The original real-valued function f is accordingly expanded

$$f = \sum\limits_{k = 1}^\infty {{\rho _k}(t)\cos {\theta _k}(t)} $$

which, besides the properties of ρk and θk given above, also satisfies

$$H({\rho _k}\cos {\theta _k})(t) = {\rho _k}(t)\sin {\theta _k}(t).$$

Real-valued functions f (t)= ρ(t)cos θ(t) that satisfy the condition

$$\rho \geqslant 0,\,\,\,\,\,\,\,{\theta ^\prime }(t) \geqslant 0,\,\,\,\,\,\,\,\,H(\rho \cos \theta )(t) = \rho (t)\sin \theta (t)$$

are called mono-components. If f is a mono-component, then the phase derivative θ′(t) is defined to be instantaneous frequency of f. The above described positive-instantaneous frequency expansion is a generalization of the Fourier series expansion. Mono-components are crucial to understand the concept instantaneous frequency. We will present several most important mono-component function classes. Decompositions of signals into mono-components are called adaptive Fourier decompositions (AFDs). We note that some scopes of the studies on the 1D mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds. We finally provide an account of related studies in pure and applied mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay D, Colombo F, Qian T, Sabadini I. Adaptive orthonormal systems for matrix-valued functions. Proceedings of the American Mathematical Society, 2017, 145(5): 2089–2106

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpay D, Colombo F, Qian T, Sabadini I. Adaptive Decomposition: The Case of the Drury-Arveson Space. Journal of Fourier Analysis and Applications, 2017, 23(6): 1426–1444

    Article  MathSciNet  MATH  Google Scholar 

  3. Axelsson A, Kou K I, Qian T. Hilbert transforms and the Cauchy integral in Euclidean space. Studia Mathematica, 2009, 193(2): 161–187

    Article  MathSciNet  MATH  Google Scholar 

  4. Baratchart L, Cardelli M, Olivi M. Identification and rational L2 approximation, a gradient algorithm. Automatica, 1991, 27: 413–418

    Article  MathSciNet  MATH  Google Scholar 

  5. Baratchart L, Dang P, Qian T. Hardy-Hodge Decomposition of Vector Fields in Rn. Transactions of the American Mathematical Society, 2018, 370: 2005–2022

    Article  MathSciNet  MATH  Google Scholar 

  6. Baratchart L, Mai W X, Qian T. Greedy Algorithms and Rational Approximation in One and Several Variables. In: Bernstein S., Kaehler U., Sabadini I., Sommen F. (eds) Modern Trends in Hypercomplex Analysis. Trends in Mathematics, 2016: 19–33

  7. Bell S. The Cauchy Transform, Potential theory and Conformal Mappings. CRC Press, Boca, Raton, 1992

    Google Scholar 

  8. Boashash B. Estimating and interpreting the instantaneous frequency of a signal-Part 1: Fundamentals. Proceedings of The IEEE, 1992, 80(4): 520–538

    Article  Google Scholar 

  9. Beltrán J R, de León P. Instantaneous frequency estimation and representation of the audio signal through Complex Wavelet Additive Synthesis. International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(03): 1450030

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng M T, Deng G T. Lecture notes on harmonic analysis. Peking University, 1979

  11. Coifman R, Peyriére J. Phase unwinding, or invariant subspace decompositions of Hardy spaces. Journal of Fourier Analysis and Applications, 2019, 25: 684–695

    Article  MathSciNet  MATH  Google Scholar 

  12. Coifman R, Steinerberger S. Nonlinear phase unwinding of functions. J Fourier Anal Appl, 2017, 23: 778–809

    Article  MathSciNet  MATH  Google Scholar 

  13. Coifman R, Steinerberger S, Wu H T. Carrier frequencies, holomorphy and unwinding. SIAM J. Math. Anal., 2017, 49(6): 4838–4864

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheng Q S. Digital Signal Processing. Peking University Press, 2003, in Chinese

  15. Chen Q H, Qian T, Tan L. H. Constructive Proof of Beurling-Lax Theorem, Chin. Ann. of Math., 2015, 36: 141–146

    MathSciNet  MATH  Google Scholar 

  16. Cohen L. Time-Frequency Analysis: Theory and Applications. Prentice Hall, 1995

  17. Chen Q H, Mai W X, Zhang L M, Mi W. System identification by discrete rational atoms. Automatica, 2015, 56: 53–59

    Article  MathSciNet  MATH  Google Scholar 

  18. Colombo F, Sabadini I, Sommen F. The Fueter primitive of bi-axially monogenic functions. Communications on Pure and Applied Analysis, 2014, 13(2): 657–672

    Article  MathSciNet  MATH  Google Scholar 

  19. Colombo F, Sabadini I, Sommen F. The Fueter mapping theorem in integral form and the ℱ-functional calculus. Mathematical Methods in the Applied Sciences, 2010, 33(17): 2050–2066

    Article  MathSciNet  MATH  Google Scholar 

  20. Dang P, Deng G T, Qian T. A Sharper Uncertainty principle. Journal of Functional Analysis, 2013, 265(10): 2239–2266

    Article  MathSciNet  MATH  Google Scholar 

  21. Dang P, Deng G T, Qian T. A Tighter Uncertainty Principle For Linear Canonical Transform in Terms of Phase Derivative. IEEE Transactions on Signal Processing, 2013, 61(21): 5153–5164

    Article  MathSciNet  MATH  Google Scholar 

  22. Dang P, Liu H, Qian T. Hilbert Transformation and Representation of ax + b Group. Canadian Mathematical Bulletin, 2018, 61(1): 70–84

    Article  MathSciNet  MATH  Google Scholar 

  23. Dang P, Liu H, Qian T. Hilbert Transformation and rSpin(n)+Rn Group. arXiv:1711. 04519v1[math.CV], 2017

  24. Davis G, Mallet S, Avellaneda M. Adaptive Greedy Approximations, Constr. Approxi., 1997, 13: 57–98

    Article  Google Scholar 

  25. Dang P, Mai W X, Qian T. Fourier Spectrum Characterizations of Clifford Hp Spaces on \(R_ + ^{n + 1}\) for 1 ≼ p ≼ ∞. Journal of Mathematical Analysis and Applications, 2020, 483: 123598

    Article  MathSciNet  MATH  Google Scholar 

  26. Dang P, Qian T. Analytic Phase Derivatives, All-Pass Filters and Signals of Minimum Phase. IEEE Transactions on Signal Processing, 2011, 59(10): 4708–4718

    Article  MathSciNet  MATH  Google Scholar 

  27. Dang P, Qian T. Transient Time-Frequency Distribution based on Mono-component Decompositions. International Journal of Wavelets, Multiresolution and Information Processing, 2013, 11(3): 1350022

    Article  MATH  Google Scholar 

  28. Dang P, Qian T, Chen Q H. Uncertainty Principle and Phase Amplitude Analysis of Signals on the Unit Sphere. Advances in Applied Clifford Algebras, 2017, 27(4): 2985–3013

    Article  MathSciNet  MATH  Google Scholar 

  29. Dang P, Qian T, You Z. Hardy-Sobolev spaces decomposition and applications in signal analysis. J. Fourier Anal. Appl., 2011, 17(1): 36–64

    Article  MathSciNet  MATH  Google Scholar 

  30. Dang P, Qian T, Yang Y. Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces. Journal of Mathematical Analysis and Applications, 2016, 437(2): 912–940

    Article  MathSciNet  MATH  Google Scholar 

  31. Deng G T, Qian T. Rational approximation of Functions in Hardy Spaces. Complex Analysis and Operator Theory, 2016, 10(5): 903–920

    Article  MathSciNet  MATH  Google Scholar 

  32. Eisner T, Pap M. Discrete orthogonality of the Malmquist Takenaka system of the upper half plane and rational interpolation. Journal of Fourier Analysis and Applications, 2014, 20(1): 1–16

    Article  MathSciNet  MATH  Google Scholar 

  33. Falcão M I, Cruz J F, Malonek H R. Remarks on the generation of monogenic functions. International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering, 17, Weimar, 2006

  34. Fulcheri P, Olivi P. Matrix rational H2 approximation: a gradient algorithm based on schur analysis. SIAM I. Control Optim., 1998, 36(6): 2103–2127

    Article  MATH  Google Scholar 

  35. Gabor D. Theory of communication. J. IEE., 1946, 93: 429–457

    Google Scholar 

  36. Gaudry G I, Long R, Qian T. A Martingale proof of L2-boundednessof Clifford-Valued Singular Integrals. Annali di Mathematica Pura Ed Applicata, 1993, 165: 369–394

    Article  MATH  Google Scholar 

  37. Gaudry G, Qian T, Wang S L, Boundedness of singular integrals with holomorphic kernels on star-shaped closed Lipschitz curves. Colloquium Mathematicum, 1996: 133–150

  38. Garnett J B. Bounded Analyic Functions. Academic Press, 1981

  39. Gomes N R. Compressive sensing in Clifford analysis. Doctoral Dissertation, Universidade de Aveiro (Portugal), 2015

  40. Gong S. Private comminication, 2002

  41. Gorusin G M. Geometrical Theory of Functions of One Complex Variable. translated by Jian-Gong Chen, 1956

  42. Ganta P, Manu G, Anil Sooram S. New Perspective for Health Monitoring System. International Journal of Ethics in Engineering and Management Education, 2016

  43. Hummel J A. Multivalent starlike function. J. d’ analyse Math., 1967, 18: 133–160

    Article  MathSciNet  MATH  Google Scholar 

  44. Huang N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lndon, 1998: 903–995

  45. Kirkbas A, Kizilkaya A, Bogar E. Optimal basis pursuit based on jaya optimization for adaptive fourier decomposition. Telecommunications and Signal Processing, 2017 40th International Conference on IEEE: 538–543

  46. Krausshar R S, Ryan J. Clifford and harmonic analysis on cylinders and tori. Revista Matematica Iberoamericana, 2005, 21(1): 87–110

    Article  MathSciNet  MATH  Google Scholar 

  47. Li H C, Deng G T, Qian T. Fourier Spectrum Characterizations of Hp Spaces on Tubes Over Cones for 1 ≼ p ≼ ∞. Complex Analysis and Operator Theory, 2018, 12: 1193–1218

    Article  MathSciNet  MATH  Google Scholar 

  48. Li H C, Deng G T, Qian T. Hardy space decomposition of on the unit circle: 0¡p¡1. Complex Variables and Elliptic Equations: An International Journal, 2016, 61(4): 510–523

    Article  MathSciNet  MATH  Google Scholar 

  49. Lei Y, Fang Y, Zhang L M. Iterative learning control for discrete linear system with wireless transmission based on adaptive fourier decomposition. Control Conference (CCC), 2017 36th Chinese IEEE

  50. Liang Y, Jia L M, Cai G. A new approach to diagnose rolling bearing faults based on AFD. Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation-Volume II, Springer

  51. Li C, McIntosh A, Qian T. Clifford algebras, Fourier transforms, and singular Convolution operators on Lipschitz surfaces. Revista Matematica Iberoamericana, 1994, 10(3): 665–695

    Article  MathSciNet  MATH  Google Scholar 

  52. Li C, McIntosh A, Semmes S. Convolution Singular Integrals on Lipschitz Surfaces. Journal of the American Mathematical Society, 1992: 455–481

  53. Li S, Qian T, Mai W X. Sparse Reconstruction of Hardy Signal And Applications to Time-Frequency Distribution. International Journal of Wavelets, Multiresolution and Information Processing, 2013

  54. Lyzzaik A. On a conjecture of M.S. Robertson. Proc. Am. Math. Soc., 1984, 91: 108–210

    Article  MathSciNet  MATH  Google Scholar 

  55. McIntosh A, Qian T. Convolution singular integrals on Lipschitz curves. Springer-Verlag, Lecture Notes in Maths, 1991, 1494: 142–162

    Article  MathSciNet  MATH  Google Scholar 

  56. McIntosh A, Qian T. Lp Fourier multipliers along Lipschitz curves. Transactions of The American Mathematical Society, 1992, 333(1): 157–176

    Article  MathSciNet  MATH  Google Scholar 

  57. Mashreghi J, Fricain E. Blaschke products and their applications. Springer, 2013 58._Mai W X, Qian T, Saitoh S. Adaptive Decomposition of Functions with Reproducing Kernels. in preparation

  58. Mi W, Qian T. Frequency Domain Identification: An Algorithm Based On Adaptive Rational Orthogonal System. Automatica, 2012, 48(6): 1154–1162

    Article  MathSciNet  MATH  Google Scholar 

  59. Mo Y, Qian T, Mi W. Sparse Representation in Szego Kernels through Reproducing Kernel Hilbert Space Theory with Applications. International Journal of Wavelet. Multiresolution and Information Processing, 2015, 13(4): 1550030

    Article  MathSciNet  MATH  Google Scholar 

  60. Mi W, Qian T, Wan F. A Fast Adaptive Model Reduction Method Based on Takenaka-Malmquist Systems. Systems and Control Letters, 2012, 61(1): 223–230

    Article  MathSciNet  MATH  Google Scholar 

  61. Mozes F E, Szalai J. Computing the instantaneous frequency for an ECG signal. Scientific Bulletin of the “Petru Maior” University of Targu Mures, 2012, 9(2): 28

    Google Scholar 

  62. Nahon M. Phase Evaluation and Segmentation. Ph.D. Thesis, Yale University, 2000

  63. Perotti A. Directional quaternionic Hilbert operators. Hypercomplex analysis, Birkhüser Basel, 2008: 235–258

  64. Picinbono B. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing, 1997, 45(3): 552–560

    Article  Google Scholar 

  65. Qian T. Singular integrals with holomorphic kernels and Fourier multipliers on star-shape Lipschitz curves. Studia Mathematica, 1997, 123(3): 195–216

    Article  MathSciNet  MATH  Google Scholar 

  66. Qian T. Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. Journal of Integral Equations and Applications, 2005, 17(2): 159–198

    Article  MathSciNet  MATH  Google Scholar 

  67. Qian T. Analytic Signals and Harmonic Measures. Journal of Mathematical Analysis and Applications, 2006, 314(2): 526–536

    Article  MathSciNet  MATH  Google Scholar 

  68. Qian T. Mono-components for decomposition of signals. Mathematical Methods in the Applied Sciences, 2006, 29(10): 1187–1198

    Article  MathSciNet  MATH  Google Scholar 

  69. Qian T. Boundary Derivatives of the Phases of Inner and Outer Functions and Applications. Mathematical Methods in the Applied Sciences, 2009, 32: 253–263

    Article  MathSciNet  MATH  Google Scholar 

  70. Qian T. Intrinsic mono-component decomposition of functions: An advance of Fourier theory. Mathematical Methods in Applied Sciences, 2010, 33: 880–891

    Article  MathSciNet  MATH  Google Scholar 

  71. Qian T. Two-Dimensional Adaptive Fourier Decomposition. Mathematical Methods in the Applied Sciences, 2016, 39(10): 2431–2448

    Article  MathSciNet  MATH  Google Scholar 

  72. Qian T. Adaptive Fourier Decomposition: A Mathematical Method Through Complex Analysis. Harmonic Analysis and Signal Analysis, Science Press (in Chinese), 2015

  73. Qian T, Li P T. Singular Integrals and Fourier Theory. Science Press (in Chinese), 2017

  74. Qian T. Fourier analysis on starlike Lipschitz surfaces. Journal of Functional Analysis, 2001, 183: 370–412

    Article  MathSciNet  MATH  Google Scholar 

  75. Qian T. Cyclic AFD Algorithm for Best Approximation by Rational Functions of Given Order. Mathematical Methods in the Applied Sciences, 2014, 37(6): 846–859

    Article  MathSciNet  MATH  Google Scholar 

  76. Qian T, Chen Q H, Tan L H. Rational Orthogonal Systems are Schauder Bases. Complex Variables and Elliptic Equations, 2014, 59(6): 841–846

    Article  MathSciNet  MATH  Google Scholar 

  77. Qian T, Chen Q H, Li L Q. Analytic unit quadrature signals with non-linear phase. Physica D: Nonlinear Phenomena, 2005, 303: 80–87

    Article  MATH  Google Scholar 

  78. Qian T, Huang J S. AFD on the n-Torus. in preparation

  79. Qian T, Ho I T, Leong I T, Wang Y B. Adaptive decomposition of functions into pieces of non-negative instantaneous frequencies. International Journal of Wavelets, Multiresolution and Information Processing, 2010, 8(5): 813–833

    Article  MathSciNet  MATH  Google Scholar 

  80. Qian T, Li H, Stessin M. Comparison of Adaptive Mono-component Decompositions. Nonlinear Analysis: Real World Applications, 2013, 14(2): 1055–1074

    Article  MathSciNet  MATH  Google Scholar 

  81. Qian T, Tan L. H. Characterizations of Mono-components: the Blaschke and Starlike types. Complex Analysis and Operator Theory, 2015: 1–17

  82. Qian T, Tan L H. Backward shift invariant subspaces with applications to band preserving and phase retrieval problems. Mathematical Methods in the Applied Sciences, 2016, 39(6): 1591–1598

    Article  MathSciNet  MATH  Google Scholar 

  83. Qian T, Wang Y B. Adaptive Fourier Series-A Variation of Greedy Algorithm. Advances in Computational Mathematics, 2011, 34(3): 279–293

    Article  MathSciNet  MATH  Google Scholar 

  84. Qian T, Wegert E. Optimal Approximation by Blaschke Forms. Complex Variables and Elliptic Equations, 2013, 58(1): 123–133

    Article  MathSciNet  MATH  Google Scholar 

  85. Qian T, Sproessig W, Wang J X. Adaptive Fourier decomposition of functions in quater-nionic Hardy spaces. Mathematical Methods in the Applied Sciences, 2012, 35(1): 43–64

    Article  MathSciNet  Google Scholar 

  86. Qian T, Tan L H, Wang Y B. Adaptive Decomposition by Weighted Inner Functions: A Generalization of Fourier Serie. J. Fourier Anal. Appl., 2011, 17(2): 175–190

    Article  MathSciNet  MATH  Google Scholar 

  87. Qian T, Wang J X. Adaptive Decomposition of Functions by Higher Order Szegö Kernels I: A Method for Mono-component Decomposition. submitted to Acta Applicanda Mathematicae

  88. Qian T, Wang J Z. Gradient Descent Method for Best Blaschke-Form Approximation of Function in Hardy Space. http://arxiv.org/abs/1803.08422

  89. Qian T, Sproessig W, Wang J X. Adaptive Fourier decomposition of functions in quater-nionic Hardy spaces. Mathematical Methods in the Applied Sciences, 2012,35: 43–64

    Article  MathSciNet  Google Scholar 

  90. Qian T, Wang J X, Yang Y. Matching Pursuits among Shifted Cauchy Kernels in Higher-Dimensional Spaces. Acta Mathematica Scientia, 2014, 34(3): 660–672

    Article  MathSciNet  MATH  Google Scholar 

  91. Qian T, Wang R, Xu Y S, Zhang H Z. Orthonormal Bases with Nonlinear Phase. Advances in Computational Mathematics, 2010, 33: 75–95

    Article  MathSciNet  MATH  Google Scholar 

  92. Qian T, Xu Y S, Yan D Y, Yan L X, Yu B. Fourier Spectrum Characterization of Hardy Spaces and Applications. Proceedings of the American Mathematical Society, 2009, 137(3): 971–980

    Article  MathSciNet  MATH  Google Scholar 

  93. Qian T, Yang Y. Hilbert Transforms on the Sphere With the Clifford Algebra Setting. Journal of Fourier Analysis and Applications, 2019, 15: 753–774

    Article  MathSciNet  MATH  Google Scholar 

  94. Qian T. Zhang L M, Li Z X. Algorithm of Adaptive Fourier Decomposition. IEEE Transaction on Signal Processing, Dec., 2011, 59(12): 5899–5902

    Article  MathSciNet  MATH  Google Scholar 

  95. Qu W, Dang P. Rational Approximation in a Class of Weighted Hardy Spaces. Complex Analysis and Operator Theory volume, 2019, 13: 1827–1852

    Article  MathSciNet  MATH  Google Scholar 

  96. Salomon L. Analyse de l’anisotropie dans des images texturées, 2016

  97. Sakaguchi F, Hayashi M. General theory for integer-type algorithm for higher order differential equations. Numerical Functional Analysis and Optimization, 2011, 32(5): 541–582

    Article  MathSciNet  MATH  Google Scholar 

  98. Sakaguchi F, Hayashi M. Differentiability of eigenfunctions of the closures of differential operators with rational coefficient functions, arXiv:0903.4852, 2009

  99. Sakaguchi F, Hayashi M. Practical implementation and error bound of integer-type algorithm for higher-order differential equations. Numerical Functional Analysis and Optimization, 2011, 32(12): 1316–1364

    Article  MathSciNet  MATH  Google Scholar 

  100. Sakaguchi F, Hayashi M. Integer-type algorithm for higher order differential equations by smooth wavepackets. arXiv:0903.4848, 2009

  101. Schepper D, Qian T, Sommen F, Wang J X. Holomorphic Approximation of L2-functions on the Unit Sphere in R3. Journal of Mathematical Analysis and Applications, 2014, 416(2): 659–671

    Article  MathSciNet  MATH  Google Scholar 

  102. Sharpley R C, Vatchev V. Analysis of intrinsic mode functions. Constructive Approximation, 2006, 24: 17–47

    Article  MathSciNet  MATH  Google Scholar 

  103. Stein E M, Weiss G. Introduction to Fourirer Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey, 1971

    Google Scholar 

  104. Tan L H, Shen L X, Yang L H. Rational orthogonal bases satisfying the Bedrosian Identity. Advances in Computational Mathematics, 2010, 33: 285–303

    Article  MathSciNet  MATH  Google Scholar 

  105. Tan L H, Yang L H, Huang D R. The structure of instantaneous frequencies of periodic analytic signals. Sci. China Math., 2010, 53(2): 347–355

    Article  MathSciNet  MATH  Google Scholar 

  106. Tan L H, Qian T. Backward Shift Invariant Subspaces With Applications to Band Preserving and Phase Retrieval Problems

  107. Tan L H, Qian T. Extracting Outer Function Part from Hardy Space Function. Science China Mathematics, 2017, 60(11): 2321–2336

    Article  MathSciNet  MATH  Google Scholar 

  108. Tan L H, Qian T, Chen Q H. New aspects of Beurling Lax shift invariant subspaces. Applied Mathematics and Computation, 2015: 257–266

  109. Vatchev V. A class of intrinsic trigonometric mode polynomials. International Conference Approximation Theory. Springer, Cham, 2016: 361–373

    MATH  Google Scholar 

  110. Vliet D V. Analytic signals with non-negative instantaneous frequency. Journal of Integral Equations and Applications, 2009, 21: 95–111

    Article  MathSciNet  MATH  Google Scholar 

  111. Walsh J L. Interpolation and Approximation by Rational Functions in the Complex Plane. American Mathematical Society: Providence, RI, 1969

    Google Scholar 

  112. Wang S L. Simple Proofs of the Bedrosian Equality for the Hilbert Transform. Science in China, Series A: Mathematics, 2009, 52(3): 507–510

    Article  MathSciNet  MATH  Google Scholar 

  113. Wang J X, Qian T. Approximation of monogenic functions by higher order Szegö kernels on the unit ball and the upper half space. Sciences in China: Mathematics, 2014, 57(9): 1785–1797

    MATH  Google Scholar 

  114. Weiss G, Weiss M. A derivation of the main results of the theory of Hp-spaces. Rev. Un. Mat. Argentina, 1962, 20: 63–71

    MathSciNet  MATH  Google Scholar 

  115. Wu W. Applications in Digital Image Processing of Octonions Analysis and the Qian Method. South China Normal University, 2014

  116. Wang Z, da Cruz J N, Wan F. Adaptive Fourier decomposition approach for lung-heart sound separation. Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA). 2015 IEEE International Conference on. IEEE, 2015

  117. Wu M Z, Wang Y, Li X M. Fast Algorithm of The Qian Method in Digital Watermarking. Computer Engineering and Desining, 2016

  118. Wu M Z, Wang Y, Li X M. Improvement of 2D Qian Method and its Application in Image Denoising. South China Normal University, 2016

  119. Xu Y S. Private comminication, 2005

  120. Yang Y, Qian T, Sommen F. Phase Derivative of Monogenic Signals in Higher Dimensional Spaces. Complex Analysis and Operator Theory, 2012, 6(5): 987–1010

    Article  MathSciNet  MATH  Google Scholar 

  121. Yu B, Zhang H Z. The Bedrosian Identity and Homogeneous Semi-convolution Equations. Journal of Integral Equations and Applications, 2008, 20: 527–568

    Article  MathSciNet  MATH  Google Scholar 

  122. Zhang L. A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition. World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2013

  123. Zhang L M, Liu N, Yu P. A novel instantaneous frequency algorithm and its application in stock index movement prediction. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(4): 311–318

    Article  Google Scholar 

  124. Zhang L M, Qian T, Mai W X, Dang P. Adaptive Fourier decomposition-based Dirac type time-frequency distribution. Mathematical Methods in the Applied Sciences, 2017, 40(8): 2815–2833

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper was supported by Macao University Multi-Year Research Grant (MYRG)MYRG2016-00053-FST and Macao Government Science and Technology Foundation FDCT 0123/2018/A3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Qian.

Additional information

Translated from Advances in Mathematics (China), 2018, 47(3): 321–347

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, T. Positive-instantaneous frequency and approximation. Front. Math. China 17, 337–371 (2022). https://doi.org/10.1007/s11464-022-1014-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-022-1014-1

Keywords

MSC2020

Navigation