Skip to main content
Log in

Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

This paper is devoted to studying uncertainty principle of Heisenberg type for signals on the unit sphere in the Clifford algebra setting. In the Clifford algebra setting we propose two forms of uncertainty principle for spherical signals, of which both correspond to the strongest form of uncertainty principle for periodic signals. The lower-bounds of the proven uncertainty principles are in terms of a scalar-valued phase derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, vol. 76. Pitman Books Limited, London (1982)

    MATH  Google Scholar 

  2. Brackx, F., De Schepper, H., Eelbode, D.: A new Hilbert transform on the unit sphere in \({\bf R}^{m}\). Complex Var. Theory Appl. 51, 453–462 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Breitenberger, E.: Uncertainty measures and uncertainty relations for angle observables. Found. Phys. 15, 353–364 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  4. Cohen, L.: Time–Frequency Analysis: Theory and Applications. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  5. Cohen, L.: The uncertainty principle in signal analysis. In: Proceedings of the IEEE-SP International Symposium on Time–Frequency and Time–Scale Analysis, pp. 182–185 (1994)

  6. Cowling, M.G., Price, J.F.: Bandwidth versus time concentration: the Heisenberg–Pauli–Weyl inequality. SIAM J. Math. Anal. 15, 151–165 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dai, F., Xu, Y.: The Hardy–Rellich inequality and uncertainty principle on the sphere. Constr. Approx. 40, 141–171 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dang, P., Deng, G.T., Qian, T.: A sharper uncertainty principle. J. Funct. Anal. 265, 2239–2266 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dang, P., Qian, T., You, Z.: Hardy–Sobolev spaces decomposition and applications in signal analysis. J. Fourier Anal. Appl. 17, 36–64 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dang, P., Deng, G.T., Qian, T.: A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 61(21), 5153–5164 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dang, P.: Tighter uncertainty principles for periodic signals in terms of frequency. Math. Methods Appl. Sci. 38, 365–379 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions: A Function Theory for the Dirac Operator. Kluwer Academic Publishers, Dordrecht (1992)

    Book  MATH  Google Scholar 

  13. Faris, W.G.: Inequalities and uncertainty principles. J. Math. Phys. 19, 461–466 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. (N.S.) 9, 129–206 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49, 3136–3144 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Fink, L.M.: Relations between the spectrum and instantaneous frequency of a signal. Probl. Inform. Transm. 2, 11–21 (1966)

    Google Scholar 

  17. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere: With Applications to Geomathematics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  19. Gabor, D.: Theory of communication. J. IEEE 93(III), 429–457 (1946)

    Google Scholar 

  20. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  21. Khalid, Z., Durrani, S., Sadeghi, P., Kennedy, R.A.: Concentration uncertainty principles for signals on the unit sphere. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3717–3720. IEEE (2012)

  22. Michel, V.: Lectures on constructive approximation. AMC 10, 12 (2013)

    Google Scholar 

  23. Narcowich, F.J., Ward, J.D.: Wavelets associated with periodic basis functions. Appl. Comput. Harmon. Anal. 3, 40–56 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Narcowich, F.J., Ward, J.D.: Nonstationary wavelets on the \(m\)-sphere for scattered data. Appl. Comput. Harmon. Anal. 3, 324–336 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Prestin, J., Quak, E.: Optimal functions for a periodic uncertainty principle and multiresolution analysis. Proc. Edinb. Math. Soc. 42, 225–242 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Prestin, J., Quak, E., Rauhut, H., Selig, K.: On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9, 387–409 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Qian, T., Yang, Y.: Hilbert transforms on the sphere with the Clifford algebra setting. J. Fourier Anal. Appl. 15, 753–774 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rösler, M., Voit, M.: An uncertainty principle for ultraspherical expansions. J. Math. Anal. Appl. 209, 624–634 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Selig, K.K.: Uncertainty principles revisited. Electron. Trans. Numer. Anal. 14, 165–177 (2002)

    MATH  MathSciNet  Google Scholar 

  30. Selig, K.K.: Approximation theory. In: Müller, M.W., Felten, M., Mache, D.H. (eds.) Trigonometric Wavelets and the Uncertainty Principle, pp. 293–304. Akademie, Berlin (1995)

    Google Scholar 

  31. Stern, A.: Uncertainty principles in linear canonical transform domains and some of their implications in optics. J. Opt. Soc. Am. A 25, 647–652 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Yang, Y., Dang, P., Qian, T.: Space-frequency analysis in higher dimensions and applications. Ann. Mat. Pura Appl. 194, 953–968 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  33. Yang, Y., Qian, T., Sommen, F.: Phase derivative of monogenic signals in higher dimensional spaces. Complex Anal. Oper. Theory. 6, 987–1010 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Dang.

Additional information

Communicated by Frank Sommen.

This work was supported by Macao Science and Technology Development Fund, MSAR. Ref. 045/2015/A2; National Natural Science Funds for Young Scholars: 11701597; Macao Government FDCT 098/2012/A3; University of Macau Multi-Year Research Grant (MYRG) MYRG116(Y1-L3)-FST13-QT; NSFC grant 11571083.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, P., Qian, T. & Chen, Q. Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere. Adv. Appl. Clifford Algebras 27, 2985–3013 (2017). https://doi.org/10.1007/s00006-017-0808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0808-9

Keywords

Navigation