Skip to main content

A Theory on Non-Constant Frequency Decompositions and Applications

  • Chapter
  • First Online:
Advancements in Complex Analysis

Abstract

Positive time-varying frequency representation of transient signals has been a hearty desire of signal analysts due to its theoretical and practical importance. During approximately the last two decades there has been formulated a signal decomposition and reconstruction method rooting in harmonic and complex analysis and giving rise to the desired signal representation. The method decomposes a signal into a few basic signals that possess positive-instantaneous frequencies. The theory has profound relations with classical mathematics and can be generalized to signals defined in higher dimensions with vector or matrix values. Such representations, in particular, promote rational approximations in higher dimensions. This article mainly serves as a survey. It also gives a new proof of a general convergence result, as well as a proof of a result concerning multiple selections of the parameters.

Expositorily, for a given real-valued signal f one can associate it with a Hardy space function F whose real part coincides with f. Such function F has the form F = f + iHf, where H stands for the Hilbert transformation of the context. We develop fast converging expansions of F in orthogonal terms of the form

$$\displaystyle \begin{array}{@{}rcl@{}}{} F=\sum _{k=1}^\infty c_k B_k,\end{array} $$

where B k’s are also Hardy space functions but with the additional properties

$$\displaystyle \begin{array}{@{}rcl@{}}{} B_k(t)=\rho _k(t)e^{i\theta _k(t)},\quad \rho _k\ge 0, \quad \theta _k'(t)\ge 0, \quad \mathrm {a.e.}\end{array} $$

The original real-valued function f is accordingly expanded

$$\displaystyle f=\sum _{k=1}^\infty \rho _k(t) \cos \theta _k(t) $$

which, besides the properties of ρ k and θ k given above, also satisfies the relation

$$\displaystyle H( \rho _k\cos \theta _k)(t)= \rho _k(t) \sin \theta _k(t). $$

Real-valued functions \(f(t)=\rho (t)\cos \theta (t)\) that satisfy the condition

$$\displaystyle \rho \ge 0, \quad \theta '(t)\ge 0, \quad H(\rho \cos \theta )(t)= \rho (t) \sin \theta (t) $$

are called mono-components. Phase derivative in the above definition will be interpreted in a wider sense. If f is a mono-component, then the phase derivative θ′(t) is defined to be instantaneous frequency of f. The above defined positive-instantaneous frequency expansion is a generalization of the Fourier series expansion. Mono-components are crucial to understand the concept of instantaneous frequency. We will present several most important mono-component function classes. Decompositions of signals into their principal or intrinsic mono-components are called adaptive Fourier decompositions (AFDs). We note that some scopes of the study of the 1D mono-components and AFDs can be extended to vector-valued or even matrix-valued signals defined on higher dimensional manifolds. We provide an account of the related studies in pure and applied mathematics, and in signal analysis, as well as applications of the developed theory.

Tao Qian supported by Research Grant of University of Macau FDCT 079/2016/A2, FDCT 0123/2018/A3

Lihui Tan supported by National Natural Science Foundation of China (Grant no.61471132)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Alpay, F. Colombo, T. Qian, I. Sabadini, Adaptive orthonormal systems for matrix-valued functions. Proc. Am. Math. Soc. 145(5), 2089–2106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Alpay, F. Colombo, T. Qian, I. Sabadini, Adaptive decomposition: the case of the Drury-Arveson Space. J. Fourier Anal. Appl. 23(6), 1426–1444 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Axelsson, K.I. Kou, T. Qian, Hilbert transforms and the Cauchy integral in Euclidean space. Stud. Math. 193(2), 161–187 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Baratchart, M. Cardelli, M. Olivi, Identification and rational L 2 approximation, a gradient algorithm. Automatica 27 413–418 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Baratchart, W.X. Mai, T. Qian, Greedy algorithms and rational approximation in one and several variables, in Modern Trends in Hypercomplex Analysis, ed. by S. Bernstein, U. Kaehler, I. Sabadini, F. Sommen. Trends in Mathematics (2016), pp 19–33

    Google Scholar 

  6. L. Baratchart, P. Dang, T. Qian, Hardy-Hodge decomposition of vector fields in Rn. Trans. Am. Math. Soc. 370(3), 1–19 (2017)

    Article  Google Scholar 

  7. S. Bell, The Cauchy Transform, Potential theory and Conformal Mappings (CRC Press, Boca, 1992)

    Google Scholar 

  8. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal-Part 1: fundamentals. Proc. IEEE 80(4), 520–538 (1992)

    Article  Google Scholar 

  9. Q.H. Chen, L.Q. Li, T. Qian, Stability of frames generalized by nonlinear atoms. Int. J. Wavelets Multiresolution Inf. Process. 3(4), 465–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Q.-H. Chen, W.-X. Mai, L.-M. Zhang, W. Mi, System identification by discrete rational atoms. Automatica 56, 53–59 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Q.S. Cheng, Digital Signal Processing (Peking University Press, Beijing 2003 (in Chinese))

    Google Scholar 

  12. M.T. Cheng, D.G. Deng, Lecture Notes on Harmonic Analysis (Beijing University, Beijing, 1979)

    Google Scholar 

  13. L. Cohen, Time-Frequency Analysis: Theory and Applications (Prentice Hall, Upper Saddle River, 1995)

    Google Scholar 

  14. R. Coifman, J. Peyriére, Phase unwinding, or invariant subspace decompositions of Hardy spaces. J. Fourier Anal. Appl. 25(3), 684–695 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. R.R. Coifman, S. Steinerberger, Nonlinear phase unwinding of functions. J. Fourier Anal. Appl. 23, 778–809 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Coifman, S. Steinerberger, H.-t. Wu, Carrier frequencies, holomorphy and unwinding. SIAM J. Math. Anal. 49(6), 4838–4864 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colombo, F., Sabadini, I., Sommen, F.: The Fueter primitive of biaxially monogenic functions. Commun. Pure Appl. Anal. 13(2), 657–672 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Colombo, I. Sabadini, F. Sommen, The Fueter mapping theorem in integral form and the \(\mathcal {F}\)-functional calculus. Math. Methods Appl. Sci. 33(17), 2050–2066 (2010)

    Google Scholar 

  19. P. Dang, T. Qian, Analytic phase derivatives, all-pass filters and signals of minimum phase. IEEE Trans. Signal Process. 59(10), 4708–4718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Dang, T. Qian, Transient time-frequency distribution based on mono-component decompositions. Int. J. Wavelets Multiresolution Inf. Process. 11(3), 1350022 (2013)

    Google Scholar 

  21. P. Dang, T. Qian, Z. You, Hardy-Sobolev spaces decomposition and applications in signal analysis. J. Fourier Anal. Appl. 17(1), 36–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Dang, G.T. Deng, T. Qian, A Sharper Uncertainty principle. J. Funct. Anal. 265(10), 2239–2266 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Dang, G.T. Deng, T. Qian, A tighter uncertainty principle for linear canonical transform in terms of phase derivative. IEEE Trans. Signal Process. 61(21), 5153–5164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Dang, T. Qian, Y. Yang, Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces. J. Math. Anal. Appl. 437(2), 912–940 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Dang, H. Liu, T. Qian, Hilbert transformation and representation of ax + b Group. Can. Math. Bull. 61(1), 1–15 (2017). https://doi.org/10.4053/CMB-2017-063-0

    MathSciNet  Google Scholar 

  26. P. Dang, T. Qian, Q.H. Chen, Uncertainty principle and phase amplitude analysis of signals on the unit sphere. Adv. Appl. Clifford Algebr. 27(4), 2985–3013 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Dang, H. Liu T. Qian, Hilbert transformation and rSpin(n) + R n group. arXiv:1711.04519v1[math.CV]

    Google Scholar 

  28. P. Dang, W.X. Mai, T. Qian, Fourier spectrum characterizations of clifford H p spaces on \(R_+^{n+1}\) for 1 ≤p ≤. arXiv:1711.02610[math.CV]

    Google Scholar 

  29. P. de León, J.R. Beltrán, F. Beltrán, Instantaneous frequency estimation and representation of the audio signal through Complex Wavelet Additive Synthesis. Int. J. Wavelets Multiresolution Inf. Process. 12(03), 1450030 (2014)

    Google Scholar 

  30. G.T. Deng, T. Qian, Rational approximation of functions in Hardy spaces. Compl. Anal. Oper. Theory 10(5), 903–920 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Eisner, M. Pap, Discrete orthogonality of the Malmquist Takenaka system of the upper half plane and rational interpolation. J. Fourier Anal. Appl. 20(1), 1–16 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Fulcheri, M. Olivi, Matrix rational H 2 approximation: a gradient algorithm based on Schur analysis. SIAM I. Control Optim. 36(6), 2103–2127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Gabor, Theory of communication. J. IEEE 93(III), 429–457 (1946)

    Google Scholar 

  34. P. Ganta, G. Manu, S. Anil Sooram, New perspective for health monitoring system. Int. J. Ethics Eng. Manag. Educ. 3(10) (2016). ISSN: 2348–4748

    Google Scholar 

  35. J.B. Garnett, Bounded Analytic Functions (Academic Press, New York, 1981)

    MATH  Google Scholar 

  36. G.I. Gaudry, R. Long, T. Qian, A martingale proof of L2-boundedness of clifford-valued singular integrals. Annali di Mathematica Pura Ed Applicata 165, 369–394 (1993)

    Article  MATH  Google Scholar 

  37. G. Gaudry, T. Qian, S.L. Wang, Boundedness of singular integrals with holomorphic kernels on star-shaped closed Lipschitz curves. Colloq. Math. LXX, 133–150 (1996)

    Google Scholar 

  38. G.M. Gorusin, Geometrical Theory of Functions of One Complex Variable, translated by Jian-Gong Chen (1956)

    Google Scholar 

  39. N.E. Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A454, 903–995 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. J.A. Hummel, Multivalent starlike function. J. d’ analyse Math. 18, 133–160 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. N. Kerzman, E.M. Stein, The Cauchy kernel, the Szegö kernel, and the Riemann mapping function. Math. Ann. 236(1), 85–93 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Kirkbas, A. Kizilkaya, E. Bogar, Optimal basis pursuit based on Jaya optimization for adaptive Fourier decomposition, in 2017 40th International Conference on IEEE Telecommunications and Signal Processing, pp. 538–543

    Google Scholar 

  43. R.S. Krausshar, J. Ryan, Clifford and harmonic analysis on cylinders and tori. Rev. Mat. Iberoamericana 21(1), 87–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Lei, Y. Fang, L.M. Zhang, Iterative learning control for discrete linear system with wireless transmission based on adaptive Fourier decomposition, in 2017 36th Chinese IEEE Control Conference (CCC) (2017)

    Google Scholar 

  45. Y.T. Li, T. Qian, A novel 2D partial unwinding adaptive fourier decomposition method with application to frequency domain system identification. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5571

  46. C. Li, A. McIntosh, S. Semmes, Convolution singular integrals on Lipschitz surfaces. J. Am. Math. Soc. 5, 455–481 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Li, A. McIntosh, T. Qian, Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoamericana 10(3), 665–695 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. H.C. Li, G.T. Deng, T. Qian, Hardy space decomposition of on the unit circle: 0 < p < 1. Complex Variables Elliptic Equ. Int. J. 61(4), 510–523 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. H.C. Li, G.T. Deng, T. Qian, Fourier spectrum characterizations of H p spaces on tubes over cones for 1 ≤p ≤. Compl. Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-017-0737-6

  50. Y.T. Li, L.M. Zhang, T. Qian, A novel 2D partial unwinding adaptive fourier decomposition method with application to frequency domain system identification. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5571

  51. Y.T. Li, L.M. Zhang, T. Qian, 2D partial unwinding—a novel non-linear phase decomposition of images. IEEE Trans. Image Process. (2019). https://doi.org/10.1109/TIP.2019.2914000

  52. Y. Liang, L.-M. Jia, G. Cai, A new approach to diagnose rolling bearing faults based on AFD, in Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation, vol. II (Springer, Berlin, 2014)

    Google Scholar 

  53. A. Lyzzaik, On a conjecture of M.S. Robertson. Proc. Am. Math. Soc. 91, 108–210 (1984)

    Google Scholar 

  54. W.X. Mai, T. Qian, Aveiro method in reproducing kernel Hilbert spaces under complete dictionary. Math. Methods Appl. Sci. 40(18), 1–19 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  55. W.X. Mai, T. Qian, Rational approximation in Hardy spaces on strips. Complex Var. Elliptic Equ. 63(12), 1721–1738 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41, 3397–3415 (1993)

    Article  MATH  Google Scholar 

  57. J. Mashreghi, E. Fricain, Blaschke Products and their Applications (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  58. A. McIntosh, T. Qian, in Convolution Singular Integrals on Lipschitz Curves. Lecture Notes in Mathematics, vol. 1494 (Springer, Berlin, 1991), pp. 142–162

    Google Scholar 

  59. A. McIntosh, T. Qian, Lp Fourier multipliers along Lipschitz curves. Trans. Am. Math. Soc. 333(1), 157–176 (1992)

    Article  MATH  Google Scholar 

  60. W. Mi, T. Qian, Frequency domain identification: an algorithm based on adaptive rational orthogonal system. Automatica 48(6), 1154–1162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. W. Mi, T. Qian, F. Wan, in A Fast Adaptive Model Reduction Method Based on Takenaka-Malmquist Systems, ed. by W. Mi, T. Qian, F. Wan. Systems and Control Letters, vol. 61(1) (2012), pp. 223–230

    Google Scholar 

  62. Y. Mo, T. Qian, W. Mi, Sparse representation in Szego Kernels through reproducing Kernel Hilbert space theory with applications. Int. J. Wavelets Multiresolution Inf. Process. 13(4), 1550030 (2015)

    Google Scholar 

  63. F.E. Mozes, J. Szalai, Computing the instantaneous frequency for an ECG signal. Sci. Bull. Petru Maior Univ. Targu Mures 9(2), 28 (2012)

    Google Scholar 

  64. M. Nahon, Phase Evaluation and Segmentation. Ph.D. Thesis (Yale University, London, 2000)

    Google Scholar 

  65. A. Perotti, Directional Quaternionic Hilbert Operators. Hypercomplex analysis (Birkhüser, Basel, 2008), pp. 235–258

    Google Scholar 

  66. B. Picinbono, On instantaneous amplitude and phase of signals. IEEE Trans. Signal Process. 45(3), 552–560 (1997)

    Article  Google Scholar 

  67. T. Qian, Singular integrals with holomorphic kernels and Fourier multipliers on star-shape Lipschitz curves. Stud. Math. 123(3), 195–216 (1997)

    Article  MATH  Google Scholar 

  68. T. Qian, Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space. Math. Ann. 310(4), 601–630 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Qian, Fourier analysis on starlike Lipschitz surfaces. J. Funct. Anal. 183, 370–412 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Qian, Characterization of boundary values of functions in Hardy spaces with applications in signal analysis. J. Integr. Equ. Appl. 17(2), 159–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  71. T. Qian, Analytic signals and harmonic measures. J. Math. Anal. Appl. 314(2), 526–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  72. T. Qian, Mono-components for decomposition of signals. Math. Methods Appl. Sci. 29(10), 1187–1198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  73. T. Qian, Boundary derivatives of the phases of inner and outer functions and applications. Math. Methods Appl. Sci. 32, 253–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  74. T. Qian, Intrinsic mono-component decomposition of functions: an advance of Fourier theory. Math. Methods Appl. Sci. 33, 880–891 (2010). https://doi.org/10.1002/mma.1214

    MathSciNet  MATH  Google Scholar 

  75. T. Qian, Cyclic AFD algorithm for best approximation by rational functions of given order. Math. Methods Appl. Sci. 37, 846–859 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  76. T. Qian, Adaptive Fourier Decomposition: A Mathematical Method Through Complex Analysis, Harmonic Analysis and Signal Analysis (Chinese Science Press, China, 2015)

    Google Scholar 

  77. T. Qian, Two-dimensional adaptive fourier decomposition. Math. Methods Appl. Sci. 39(10), 2431–2448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. T. Qian, P.-T. Li, Singular Integrals and Fourier Theory (Chinese Science Press, China, 2017)

    Google Scholar 

  79. T. Qian, L.-H. Tan, Characterizations of Mono-components: the Blaschke and Starlike types. Compl. Anal. Oper. Theory, 1–17 (2015). https://doi.org/10.1007/s11785-015-0491-6

  80. T. Qian, L.H. Tan, Backward shift invariant subspaces with applications to band preserving and phase retrieval problems. Math. Methods Appl. Sci. 39(6), 1591–1598 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  81. T. Qian, Y. Wang, Adaptive Fourier Series-A variation of Greedy algorithm. Adv. Comput. Math. 34(3), 279–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  82. T. Qian, J.-Z. Wang, Gradient Descent Method for Best Blaschke-Form Approximation of Function in Hardy Space. http://arxiv.org/abs/1803.08422

  83. T. Qian, Y. Yang, Hilbert transforms on the sphere with the Clifford algebra setting. J. Fourier Anal. Appl. 15, 753–774 (2009). https://doi.org/10.1007/s00041-009-9062-4

    Article  MathSciNet  MATH  Google Scholar 

  84. T. Qian, E. Wegert, Optimal approximation by Blaschke Forms. Complex Variables Elliptic Equ. 58(1), 123–133 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  85. T. Qian, Q.-H. Chen, L.-Q. Li, Analytic unit quadrature signals with non-linear phase. Physica D Nonlinear Phenomena 303, 80–87 (2005)

    Article  MATH  Google Scholar 

  86. T. Qian, Y.S. Xu, D.Y. Yan, L.X. Yan, B. Yu, Fourier spectrum characterization of Hardy spaces and applications. Proc. Am. Math. Soc. 137(3), 971–980 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  87. T. Qian, R. Wang, Y.-S. Xu, H.-Z. Zhang, Orthonormal bases with nonlinear phase. Adv. Comput. Math. 33, 75–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  88. T. Qian, I.T. Ho, I.T. Leong, Y.B. Wang, Adaptive decomposition of functions into pieces of non-negative instantaneous frequencies. Int. J. Wavelets Multiresolution Inf. Process. 8(5), 813–833 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  89. T. Qian, L.H. Tan, Y.B. Wang, Adaptive decomposition by weighted inner functions: a generalization of Fourier Series. J. Fourier Anal. Appl. 17(2), 175–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  90. T. Qian, L. Zhang, Z.-X. Li, Algorithm of adaptive Fourier decomposition. IEEE Trans. Signal Process. 59(12), 5899–5902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  91. T. Qian, W. Sproessig, J.X. Wang, Adaptive Fourier decomposition of functions in quaternionic Hardy spaces. Math. Methods Appl. Sci. 35(1), 43–64 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  92. T. Qian, H. Li, M. Stessin, Comparison of adaptive Mono-component decompositions. Nonlinear Anal. Real World Appl. 14(2), 1055–1074 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  93. T. Qian, Q.H. Chen, L.H. Tan, Rational orthogonal systems are schauder bases. Complex Variables Elliptic Equ. 59(6), 841–846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  94. T. Qian, J.X. Wang, Y. Yang, Matching pursuits among shifted Cauchy kernels in higher-dimensional spaces. Acta Math. Sci. 34(3), 660–672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  95. Qian, T., Wang, J.Z., Mai, W.X.: An enhancement algorithm for cyclic adaptive Fourier decomposition. Appl. Comput. Harmon. Anal. 47(2), 516–525 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  96. W. Qu, P. Dang, Rational Approximation in the Bergman Spaces. http://arxiv.org/abs/1803.04609

  97. F. Sakaguchi, M. Hayashi, Differentiability of eigenfunctions of the closures of differential operators with rational coefficient functions. arXiv:0903.4852(2009)

    Google Scholar 

  98. F. Sakaguchi, M. Hayashi, Integer-type algorithm for higher order differential equations by smooth wavepackets. arXiv:0903.4848(2009)

    Google Scholar 

  99. F. Sakaguchi, M. Hayashi, General theory for integer-type algorithm for higher order differential equations. Numer. Funct. Anal. Optim. 32(5), 541–582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  100. F. Sakaguchi, M. Hayashi, Practical implementation and error bound of integer-type algorithm for higher-order differential equations. Numer. Funct. Anal. Optim. 32(12), 1316–1364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  101. L. Salomon, Analyse de l’anisotropie Dans Des Images Texturées (2016)

    Google Scholar 

  102. R.C. Sharpley, V. Vatchev, Analysis of intrinsic mode functions. Constr. Approx. 24, 17–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  103. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971)

    MATH  Google Scholar 

  104. X.Y. Sun, P. Dang, Numerical stability of circular Hilbert transform and its applications to signal decomposition. Appl. Math. Comput. 359, 357–373 (2019)

    MathSciNet  MATH  Google Scholar 

  105. L.H. Tan, L.X.Shen, L.-H. Yang, Rational orthogonal bases satisfying the Bedrosian identity. Adv. Comput. Math. 33, 285–303 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  106. L.H. Tan, L.H. Yang, D.R. Huang, The structure of instantaneous frequencies of periodic analytic signals. Sci. China Math. 53(2), 347–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  107. L.H. Tan, T. Qian, Q.H. Chen, New aspects of Beurling Lax shift invariant subspaces. Appl. Math. Comput. 256, 257–266 (2015)

    MathSciNet  MATH  Google Scholar 

  108. L.H. Tan, T. Qian, Extracting outer function part from Hardy space function. Sci. China Math. 60(11), 2321–2336 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  109. V.N. Temlyakov, Greedy algorithm and m-term trigonometric approximation. Constr. Approx. 107, 569–587 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  110. V. Vatchev, A class of intrinsic trigonometric mode polynomials, in International Conference Approximation Theory (Springer, Cham, 2016), pp. 361–373

    MATH  Google Scholar 

  111. D.V. Vliet, Analytic signals with non-negative instantaneous frequency. J. Integr. Equ. Appl. 21(1), 95–111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  112. J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Plane (American Mathematical Society, Providence, 1969)

    Google Scholar 

  113. S.L. Wang, Simple proofs of the Bedrosian equality for the Hilbert transform. Sci. China, Ser. A Math. 52(3), 507–510 (2009)

    Google Scholar 

  114. J.X. Wang, T. Qian, Approximation of monogenic functions by higher order Szegö kernels on the unit ball and the upper half space. Sci. China Math. 57(9), 1785–1797 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  115. Z. Wang, J.N. da Cruz, F. Wan. Adaptive Fourier decomposition approach for lung-heart sound separation, in 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (IEEE, Piscataway, 2015)

    Google Scholar 

  116. X.Y. Wang, T. Qian, I.T. Leong, Y. Gao, Two-dimensional frequency-domain system identification. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2913047

  117. G. Weiss, M. Weiss, A derivation of the main results of the theory of Hp-spaces. Rev. Un. Mat. Argentina 20, 63–71 (1962)

    MathSciNet  MATH  Google Scholar 

  118. X. Wang, T. Qian, I.T. Leong, Y. Gao, Two dimensional frequency-domain system identification. IEEE Trans. Autom. Control 65(2), 577–590 (2020)

    Article  Google Scholar 

  119. M.Z. Wu, Y. Wang, X.-M. Li, Fast algorithm of the Qian method in digital watermarking. Commun. Eng. Des. (2016)

    Google Scholar 

  120. M.Z. Wu, Y. Wang, X.-M. Li, Improvement of 2D Qian Method and its Application in Image Denoising (South China Normal University, China, 2016)

    Google Scholar 

  121. Y.S. Xu, Private communication. Comput. Eng. Des. 37(11), 31–40 (2016)

    Google Scholar 

  122. Y. Yang, T. Qian, F. Sommen, Phase derivative of monogenic signals in higher dimensional spaces. Compl. Anal. Oper. Theory 6(5), 987–1010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  123. B. Yu, H.Z. Zhang, The Bedrosian identity and homogeneous semi-convolution equations. J. Integr. Equ. Appl. 20, 527–568 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  124. L. Zhang, A new time-frequency speech analysis approach based on adaptive Fourier decomposition, in World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering (2013)

    Google Scholar 

  125. L.-M. Zhang, N. Liu, P. Yu, A novel instantaneous frequency algorithm and its application in stock index movement prediction. IEEE J. Sel. Top. Sign. Proces. 6(4), 311–318 (2012)

    Article  Google Scholar 

  126. L.M. Zhang, T. Qian, W.X. Mai, P. Dang, Adaptive Fourier decomposition-based Dirac type time-frequency distribution. Math. Methods Appl. Sci. 40(8), 2815–2833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Q., Qian, T., Tan, L. (2020). A Theory on Non-Constant Frequency Decompositions and Applications. In: Breaz, D., Rassias, M. (eds) Advancements in Complex Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-40120-7_1

Download citation

Publish with us

Policies and ethics