Skip to main content

Advertisement

Log in

Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation. There is no optimally developed single technology; therefore, the possibility of using combined technologies for CVOC remediation, for example bioremediation integrated with reduction by nZVI, is presented. Some methods are still in the development stage. Advantages and disadvantages of each treatment strategy are provided. It is hoped that this paper can provide a basic framework for selection of successful CVOC remediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

BNPs:

Bimetallic nanoparticles

CB:

Chlorobenzene

CF:

Chloroform

CT:

Carbon tetrachloride

CVOC:

Chlorinated volatile organic compound

CW:

Constructed wetland

DCA:

Dichloroethane

DCAA:

Dichloroacetic acid

DCE:

Dichloroethene

DNAPL:

Dense non-aqueous phase liquid

EK:

Electrokinetics

HCH:

Hexachlorocyclohexane

HPRMF:

Hydroponic plant root mat filter

MCB:

Monochlorobenzene

PCA:

Tetrachloroethane

PCE:

Perchloroethylene

PRB:

Permeable reactive barrier

TCA:

Trichloroethane

TCAA:

Trichloroacetic acid

TCB:

Trichlorobenzene

TCE:

Trichloroethene

TCEtOH:

Trichloroethanol

THM:

Trihalomethane

ZVI:

Zero-valent iron

References

  • Abe Y, Aravena R, Zopfi J, Shouakar-Stash O, Cox E, Roberts J, Hunkeler D (2009) Carbon and chlorine isotope fractionation during aerobic oxidation and reductive dechlorination of vinyl chloride and cis-1,2-dichloroethene. Environ Sci Technol 43(1):101–107

    Article  CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767–2776

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Alvarenga AC, Sampaio RA, Pinho GP, Cardoso PH, Sousa IDP, Barbosa MH (2017) Phytoremediation of chlorobenzenes in sewage sludge cultivated with Pennisetum purpureum at different times. Revista Brasileira de Engenharia Agrícola e Ambiental 21(8):573–578

    Article  Google Scholar 

  • Aranzabal A, Ayastuy-Arizti J, González-Marcos J, González-Velasco J (2003) The reaction pathway and kinetic mechanism of the catalytic oxidation of gaseous lean TCE on Pd/alumina catalysts. J Catal 214(1):130–135

    Article  CAS  Google Scholar 

  • Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34(9):1794–1805

    Article  CAS  Google Scholar 

  • ATSDR (1989) Toxicological profile for 1,1,2-trichloroethane. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (1997) Toxicological profile for chloroform. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2000) Toxicological profile for methylene chloride (update). Draft for public comment. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2001) Toxicological profile for 1,2-dichloroethane. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2005) Toxicological profile for carbon tetrachloride. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2006) Toxicological profile for 1,1,1-trichloroethane. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2008) Toxicological profile for 1,1,2,2-tetrachloroethane. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2019) Toxicological profile for trichloroethylene. Public Health Service, U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2020) The ATSDR substance priority list. Division of Toxicology and Human Health Sciences, Atlanta https://www.atsdr.cdc.gov/spl/index.html

    Google Scholar 

  • Aulenta F, Catervi A, Majone M, Panero S, Reale P, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41(7):2554–2559

    Article  CAS  Google Scholar 

  • Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103(1):85–91

    Article  CAS  Google Scholar 

  • Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens Bioelectron 25(7):1796–1802

    Article  CAS  Google Scholar 

  • Aulenta F, Tocca L, Verdini R, Reale P, Majone M (2011) Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol 45(19):8444–8451

    Article  CAS  Google Scholar 

  • Bankston JL, Sola DL, Komor AT, Dwyer DF (2002) Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood. Water Res 36(6):1539–1546

    Article  CAS  Google Scholar 

  • Barcellos D, Morris LA, Nzengung V, Moura T, Mantripragada N, Thompson A (2016) Eucalyptus urograndis and Pinus taeda enhance removal of chlorobenzene and benzene in sand culture: a greenhouse study. Int J Phytoremed 18(10):977–984

    Article  CAS  Google Scholar 

  • Baric M, Pierro L, Pietrangeli B, Papini MP (2014) Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers. New Biotechnol 31(4):377–382

    Article  CAS  Google Scholar 

  • Barnes RJ, Riba O, Gardner MN, Singer AC, Jackman SA, Thompson IP (2010) Inhibition of biological TCE and sulphate reduction in the presence of iron nanoparticles. Chemosphere 80:554–562

    Article  CAS  Google Scholar 

  • Baskaran D, Rajamanickam R (2019) Aerobic biodegradation of trichloroethylene by consortium microorganism from turkey litter compost. J Environ Chem Eng 7(4):103260

    Article  CAS  Google Scholar 

  • Basnet M, Ghoshal S, Tufenkji N (2013) Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environ Sci Technol 47(23):13355–13364

    Article  CAS  Google Scholar 

  • Beeman RE, Bleckmann CA (2002) Sequential anaerobic–aerobic treatment of an aquifer contaminated by halogenated organics: field results. J Contam Hydrol 57(3–4):147–159

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Ghoshal S (2018) Optimal design of sulfidated nanoscale zerovalent iron for enhanced trichloroethene degradation. Environ Sci Technol 52(19):11078–11086

    Article  CAS  Google Scholar 

  • Bi D, Xu Y (2011) Improved photocatalytic activity of WO3 through clustered Fe2O3 for organic degradation in the presence of H2O2. Langmuir 27(15):9359–9366

    Article  CAS  Google Scholar 

  • Bisaillon A, Beaudet R, Lépine F, Déziel E, Villemur R (2010) Identification and characterization of a novel CprA reductive dehalogenase specific to highly chlorinated phenols from Desulfitobacterium hafniense strain PCP-1. Appl Environ Microbiol 76:7536–7540

    Article  CAS  Google Scholar 

  • Bradley PM, Chapelle FH (1997) Kinetics of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditions. Environ Sci Technol 31(9):2692–2696

    Article  CAS  Google Scholar 

  • Braeckevelt M, Mirschel G, Wiessner A, Rueckert M, Reiche N, Vogt C, Schultz A, Paschke H, Kuschk P, Kaestner M (2008) Treatment of chlorobenzene-contaminated groundwater in a pilot-scale constructed wetland. Ecol Eng 33(1):45–53

    Article  Google Scholar 

  • Braeckevelt M, Seeger EM, Paschke H, Kuschk P, Kaestner M (2011a) Adaptation of a constructed wetland to simultaneous treatment of monochlorobenzene and perchloroethene. Int J Phytoremed 13(10):998–1013

    Article  CAS  Google Scholar 

  • Braeckevelt M, Reiche N, Trapp S, Wiessner A, Paschke H, Kuschk P, Kaestner M (2011b) Chlorobenzene removal efficiencies and removal processes in a pilot-scale constructed wetland treating contaminated groundwater. Ecol Eng 37(6):903–913

    Article  Google Scholar 

  • Bukowska B (2003) Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol Part C: Toxicology & Pharmacology 135(4):435–441

    Google Scholar 

  • CAMEO Chemicals (n.d.) Office of response and restoration, NOAA's ocean service. National Oceanic and Atmospheric Administration, USA. Available online at: http://cameochemicals.noaa.gov. Accessed 2 Feb 2020

  • Cao S, Fei X, Wen Y, Sun Z, Wang H, Wu Z (2018) Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of dichloromethane (CH2Cl2). Appl Catal A Gen 550:20–27

    Article  CAS  Google Scholar 

  • Castillo NC, Ding L, Heel A, Graule T, Pulgarin C (2010) On the photocatalytic degradation of phenol and dichloroacetate by BiVO4: the need of a sacrificial electron acceptor. J Photochem Photobiol A Chem 216(2–3):221–227

    Article  CAS  Google Scholar 

  • Chang Y, Okeke B, Hatsu M, Takamizawa K (2001) In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Bioresour Technol 78(2):141–147

    Article  CAS  Google Scholar 

  • Chang C, Lian F, Zhu L (2011) Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ Pollut 159:2507–2514

    Article  CAS  Google Scholar 

  • Chard BK, Doucette WJ, Chard JK, Bugbee B, Gorder K (2006) Trichloroethylene uptake by apple and peach trees and transfer to fruit. Environ Sci Technol 40(15):4788–4793

    Article  CAS  Google Scholar 

  • Chaturvedi S, Dave PN (2019) Water purification using nanotechnology an emerging opportunities. Chem Methodol 3:115–144

    Google Scholar 

  • Chen Y, Lin TF, Huang C, Lin J (2008) Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 72(11):1671–1680

    Article  CAS  Google Scholar 

  • Chen K, Kao C, Sung W, Lin C, Yeh T (2011) Enhanced in-situ anaerobic bioremediation of TCE-contaminated groundwater using nanoscale zero-valent iron (nZVI). Mater Sci Forum 694:3–7. https://doi.org/10.4028/www.scientific.net/msf.694.3

    Article  Google Scholar 

  • Chen Z, Kuschk P, Paschke H, Kästner M, Müller JA, Köser H (2014) Treatment of a sulfate-rich groundwater contaminated with perchloroethene in a hydroponic plant root mat filter and a horizontal subsurface flow constructed wetland at pilot-scale. Chemosphere 117:178–184

    Article  CAS  Google Scholar 

  • Chen Z, Kuschk P, Paschke H, Kästner M, Köser H (2015) The dynamics of low-chlorinated benzenes in a pilot-scale constructed wetland and a hydroponic plant root mat treating sulfate-rich groundwater. Environ Sci Pollut Res 22:3886–3894

    Article  CAS  Google Scholar 

  • Chen Z, Vymazal J, Kuschk P (2016) Effects of tidal operation on pilot-scale horizontal subsurface flow constructed wetland treating sulfate rich wastewater contaminated by chlorinated hydrocarbons. Environ Sci Pollut Res 24:1042–1050

  • Chen F, Li Z, Liang B, Yang J, Cheng H, Huang NJ, Wang A (2019) Electrostimulated bio-dechlorination of trichloroethene by potential regulation: kinetics, microbial community structure and function. Chem Eng J 357:633–640

    Article  CAS  Google Scholar 

  • Cho Y, Choi S-I (2010) Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Chemosphere 81:940–945

  • Chow S, Lorah M, Wadhawan A, Durant N, Bouwer E (2020) Sequential biodegradation of 1,2,4-trichlorobenzene at oxic-anoxic groundwater interfaces in model laboratory columns. J Contam Hydrol 231:103639

    Article  CAS  Google Scholar 

  • Clausen L, Broholm M, Gosewinkel U, Trapp S (2017) Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia. Environ Sci Pollut Res 24(22):18320–18331

    Article  CAS  Google Scholar 

  • Cook SM (2009) Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. Jackson State University

  • Crane R, Scott T (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  CAS  Google Scholar 

  • Cwiertny DM (2006) Mechanistic investigations of granular iron and iron-based bimetallic reductants for treatment of organohalide pollutants. PhD diss. The John Hopkins University, MD

  • Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599

    Article  CAS  Google Scholar 

  • Darko-Kagya K, Khodadoust AP, Reddy KR (2010) Reactivity of aluminum lactate-modified nanoscale iron particles with pentachlorophenol in soils. Environ Eng Sci 27(10):861–869

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–13. https://doi.org/10.4061/2011/941810

    Article  CAS  Google Scholar 

  • Davis JW, Carpenter CL (1990) Aerobic biodegradation of vinyl chloride in groundwater samples. Appl Environ Microbiol 56:3878–3880

    Article  CAS  Google Scholar 

  • De Bruin WP, Kotterman M, Posthumus MA, Schraa G, Zehnder A (1992) Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58(6):1996–2000

    Article  Google Scholar 

  • Devlin J, Katic D, Barker J (2004) In situ sequenced bioremediation of mixed contaminants in groundwater. J Contam Hydrol 69(3–4):233–261

    Article  CAS  Google Scholar 

  • Di Stefano TD, Gossett JM, Zinder SH (1991) Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57(8):2287–2292

    Article  Google Scholar 

  • Dien NT, De Windt W, Buekens A, Chang MB (2013) Application of bimetallic iron (BioCATslurry) for pentachlorophenol removal from sandy soil. J Hazard Mater 252–253:83–90

    Article  CAS  Google Scholar 

  • Ding C, Zhao S, He J (2014) A Desulfitobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethane and chloroform. Environ Microbiol 16(11):3387–3397

    Article  CAS  Google Scholar 

  • Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M (2016) Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. Chemosphere 157:276–285

    Article  CAS  Google Scholar 

  • Dolinová I, Štrojsová M, Černík M, Němeček J, Macháčková J, Ševců A (2017) Microbial degradation of chloroethenes: a review. Environ Sci Pollut Res 24(15):13262–13283

    Article  CAS  Google Scholar 

  • Dong H, Hou K, Qiao W, Cheng Y, Zhang L, Wang B, Li L, Wang Y, Ning Q, Zeng G (2019) Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate. Chem Eng J 359:1046–1055

    Article  CAS  Google Scholar 

  • Doty S, Shang T, Wilson A, Moore A, Newman L, Strand S, Gordon M (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala. Water Res 37(2):441–449

    Article  CAS  Google Scholar 

  • Doucette W, Chard J, Fabrizius H, Crouch C, Petersen M, Carlsen T, Chard B, Gorder K (2007) Trichloroethylene uptake into fruits and vegetables: three-year field monitoring study. Environ Sci Technol 41(7):2505–2509

    Article  CAS  Google Scholar 

  • Doucette W, Klein H, Chard J, Dupont R, Plaehn W, Bugbee (2013) Volatilization of trichloroethylene from trees and soil: measurement and scaling approaches. Environ Sci Technol 47(11):5813–5820

    Article  CAS  Google Scholar 

  • Dries J, Bastiaens L, Springael D, Agathos S, Diels L (2005) Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems. Environ Sci Technol 39(21):8460–8465

    Article  CAS  Google Scholar 

  • Dyer M (2003) Field investigation into the biodegradation of TCE and BTEX at a former metal plating works. Eng Geol 70(3–4):321–329

    Article  Google Scholar 

  • Eapen S, Singh S, D'Souza S (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25(5):442–451

    Article  CAS  Google Scholar 

  • Elliott D, Zhang W (2001) Field assessment of nanoparticles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  CAS  Google Scholar 

  • Esmaeili N, Pirbazari A, Khodaee Z (2018) Visible-light active and magnetically recyclable Ag-coated Fe3O4/TiO2 nanocomposites for efficient photocatalytic oxidation of 2,4-dichlorophenol. Desalin Water Treat 114:251–264

    Article  CAS  Google Scholar 

  • Faisal A, Sulaymon A, Khaliefa Q (2018) A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int J Environ Sci Technol 15(5):1123–1138

    Article  CAS  Google Scholar 

  • Farooq M, Raja I, Pervez A (2009) Photocatalytic degradation of TCE in water using TiO2 catalyst. Sol Energy 83(9):1527–1533

    Article  CAS  Google Scholar 

  • Farooq U, Danish M, Lu S, Naqvi M, Qiu Z, Sui Q (2018) A step forward towards synthesizing a stable and regeneratable nanocomposite for remediation of trichloroethene. Chem Eng J 347:660–668

    Article  CAS  Google Scholar 

  • Farrell J, Melitas N, Kason M, Li T (2000) Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ Sci Technol 34(12):2549–2556

    Article  CAS  Google Scholar 

  • Fathepure B, Elango V, Singh H, Bruner M (2005) Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer. FEMS Microbiol Lett 248(2):227–234

    Article  CAS  Google Scholar 

  • Fatima K, Afzal M, Imran A, Khan Q (2015) Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil. Bull Environ Contam Toxicol 94(3):314–320

    Article  CAS  Google Scholar 

  • Field J, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19(4):463–480

  • Fox B, Borneman J, Wackett L, Lipscomb J (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29(27):6419–6427

    Article  CAS  Google Scholar 

  • Frascari D, Zannoni A, Pinelli D, Nocentini M, Baleani E, Fedi S, Zannoni D, Farneti A, Battistelli A (2006) Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses. J Hazard Mater 138:29–39

    Article  CAS  Google Scholar 

  • Freedman D, Gossett J (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55(9):2144–2151

    Article  CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  • Fung J, Weisenstein B, Mack E, Vidumsky J, Ei T, Zinder S (2009) Reductive dehalogenation of dichlorobenzenes and monochlorobenzene to benzene in microcosms. Environ Sci Technol 43(7):2302–2307

    Article  CAS  Google Scholar 

  • Garcia A, Boparai K, Chowdhury A, de Boer C, Kocur C, Passeport E, Lollar B, Austrins L, Herrera J, O’Carroll D (2020) Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: a field study. Water Res 174:115594

    Article  CAS  Google Scholar 

  • Garner K, Keller A (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16(8):2503

    Article  Google Scholar 

  • Gaza S, Schmidt K, Weigold P, Heidinger M, Tiehm A (2019) Aerobic metabolic trichloroethene biodegradation under field-relevant conditions. Water Res 151:343–348

    Article  CAS  Google Scholar 

  • Germaine K, Liu X, Cabellos G, Hogan J, Ryan D, Dowling D (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57(2):302–310

    Article  CAS  Google Scholar 

  • Gharaee A, Pirbazari A, Khodaee Z (2018) Photodeposition of silver on p-Cu2O/n-TiO2 nanocomposite applied to visible light degradation of 2,4-dichlorophenol in synthetic wastewater. Desalin Water Treat 114:205–220

    Article  CAS  Google Scholar 

  • Giddings C, Liu F, Gossett J (2010) Microcosm assessment of Polaromonas sp. JS666 as a bioaugmentation agent for degradation of cis-1,2-dichloroethene in aerobic, subsurface environments. Groundwater Monitor Rem 30(2):106–113

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Lobo M (2018) Phytotoxicity of nanoscale zerovalent iron (nZVI) in remediation strategies. Phytotoxicity of nanoparticles, Springer, p.301–333

  • Gillham R, O’Hannesin S (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32(6):958–969

    Article  CAS  Google Scholar 

  • Gomez-Hermosillo C, Pardue J, Reible D (2006) Wetland plant uptake of desorption-resistant organic compounds from sediments. Environ Sci Technol 40(10):3229–3236

    Article  CAS  Google Scholar 

  • Gotelli M, Lo Balbo A, Caballero G, Gotelli C (2020) Hexachlorocyclohexane phytoremediation using Eucalyptus dunnii of a contaminated site in Argentina. Int J Phytoremed 1–8

  • Grieger K, Jordbøge A, Hartmann N, Eriksson E, Bjerg P, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183

    Article  CAS  Google Scholar 

  • Griffin B, Tiedje J, Löffler F (2004) Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ Sci Technol 38(16):4300–4303

    Article  CAS  Google Scholar 

  • Gu M, Farooq U, Lu S, Zhang X, Qiu Z, Sui Q (2018a) Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments. J Hazard Mater 349:35–44

    Article  CAS  Google Scholar 

  • Gu M, Sui Q, Farooq U, Zhang X, Qiu Z, Lyu S (2018b) Enhanced degradation of trichloroethylene in oxidative environment by nZVI/PDA functionalized rGO catalyst. J Hazard Mater 359:157–165

    Article  CAS  Google Scholar 

  • Guiot S, Cimpoia R, Kuhn R, Alaplantive A (2008) Electrolytic methanogenic–methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Environ Sci Technol 42(8):3011–3017

    Article  CAS  Google Scholar 

  • Guo J, Chen X (2011) Solar hydrogen generation: transition metal oxides in water photoelectrolysis. McGraw Hill Professional

  • Halász J, Imre B, Hannus I (2004) IR spectroscopic investigation of hydrodechlorination on Pt-containing zeolites. Appl Catal A Gen 271(1–2):47–53

    Article  CAS  Google Scholar 

  • Han Y, Yan W (2014) Bimetallic nickel–iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation. Water Res 66:149–159

    Article  CAS  Google Scholar 

  • Han Y, Liu C, Horita J, Yan W (2016a) Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation. Appl Catal B Environ 188:77–86

    Article  CAS  Google Scholar 

  • Han J, Xin J, Zheng X, Kolditz O, Shao H (2016b) Remediation of trichloroethylene-contaminated groundwater by three modifier-coated microscale zero-valent iron. Environ Sci Pollut Res 23(14):14442–14450

    Article  CAS  Google Scholar 

  • Han Y, Sun J, Fu H, Qu X, Wan H, Xu Z, Zheng S (2016c) Highly selective hydrodechlorination of 1,2-dichloroethane toethylene over Ag-Pd/ZrO2 catalysts with trace Pd. Appl Catal A Gen 519:1–6

    Article  CAS  Google Scholar 

  • Han Y, Liu C, Horita J, Yan W (2018) Trichloroethene (TCE) hydrodechlorination by NiFe nanoparticles: influence of aqueous anions on catalytic pathways. Chemosphere 205:404–413

    Article  CAS  Google Scholar 

  • Han Y, Ghoshal S, Lowry G, Chen J (2019) A comparison of the effects of natural organic matter on sulfidated and nonsulfidated nanoscale zerovalent iron colloidal stability, toxicity, and reactivity to trichloroethylene. Sci Total Environ 671:254–261

    Article  CAS  Google Scholar 

  • Harrad T, Malloy M, Ali Khan T, Goldfarb D (1991) Levels and sources of PCDDs, PCDFs, chlorophenols (CPs) and chlorobenzenes (CBzs) in composts from a municipal yard waste composting facility. Chemosphere 23(2):181–191

    Article  CAS  Google Scholar 

  • Hartmans S, De Bont J, Tramper J, Luyben K (1985) Bacterial degradation of vinyl chloride. Biotechnol Lett 7(6):383–388

    Article  CAS  Google Scholar 

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320

    Article  CAS  Google Scholar 

  • He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370

    Article  CAS  Google Scholar 

  • He F, Qin K, Luo J, Liu S (2017) Effect of preparation method and vanadium loading amount on the catalytic activity of V/TiO2 nanoparticles. J Nanosci Nanotechnol 17(12):9050–9055

    Article  CAS  Google Scholar 

  • He F, Li Z, Shi S, Xu W, Sheng H, Gu Y, Jiang Y, Xi B (2018) Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ Sci Technol 52(15):8627–8637

    Article  CAS  Google Scholar 

  • Herrero J, Puigserver D, Nijenhuis I, Kuntze J, Carmona M (2019) Remediation potential in recalcitrant areas of PCE in alluvial fan deposit. Int J Environ Ecol Eng 13(4):203–211

    Google Scholar 

  • Hood E, Major D, Quinn J, Yoon W, Gavaskar A, Edwards E (2008) Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Groundwater Monit Rem 28(2):98–107

    Article  CAS  Google Scholar 

  • Hou X, Chen X, Bi S, Li K, Zhang C, Wang J, Zhang W (2020) Catalytic degradation of TCE by a PVDF membrane with Pd-coated nanoscale zero-valent iron reductant. Sci Total Environ 702:135030

    Article  CAS  Google Scholar 

  • Hu Y, Zhang M, Qiu R, Li X (2018) Encapsulating nanoscale zero-valent iron with a soluble Mg(OH)2 shell for improved mobility and controlled reactivity release. J Mater Chem A 6(6):2517–2526

    Article  CAS  Google Scholar 

  • Huang B, Lei C, Wei C, Zeng G (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environ Int 71:118–138

    Article  CAS  Google Scholar 

  • Huang C, Lo S, Lien H (2015) Vitamin B12-mediated hydrodechlorination of dichloromethane by bimetallic Cu/Al particles. Chem Eng J 273:413–420

    Article  CAS  Google Scholar 

  • Hunkeler D, Laier T, Breider F, Jacobsen O (2012) Demonstrating a natural origin of chloroform in groundwater using stable carbon isotopes. Environ Sci Technol 46:6096–6101

    Article  CAS  Google Scholar 

  • Ibrahem A, Abdel Moghny T, Mustafa Y, Maysour N, Mohamed Saad El Din El Dars F, Farouk Hassan R (2012) Degradation of trichloroethylene contaminated soil by zero-valent iron nanoparticles. ISRN Soil Science https://doi.org/10.5402/2012/27083

  • James C, Xin G, Doty S, Muiznieks I, Newman L, Strand S (2009) A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater. Environ Pollut 157(8–9):2564–2569

    Article  CAS  Google Scholar 

  • Jiamjitrpanich W, Parkpian P, Polprasert C, Kosanlavit R (2012) Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent iron. 2nd international conference on environment and industrial innovation IPCBEE. IACSIT, Singapore

  • Justicia-Leon S, Higgins S, Mack E, Griffiths D, Tang S, Edwards E, Löffler F (2014) Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms. Environ Sci Technol 48(3):1851–1858

    Article  CAS  Google Scholar 

  • Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C R Chimie 6:999–1007

  • Kane A, Vidumsky J, Major D, Bauer N (2005) In-situ bioremediation of a chlorinated solvent residual source in unconsolidated sediments and bedrock using bioaugmentation. Contaminated soils, sediments and water, Springer, 45–55

  • Kang J, Khan Z, Doty S (2012) Biodegradation of trichloroethylene by an endophyte of hybrid poplar. Appl Environ Microbiol 78(9):3504–3507

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831

    Article  Google Scholar 

  • Kim Y, Carraway E (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34(10):2014–2017

    Article  CAS  Google Scholar 

  • Kim H, Hong H, Jung J, Kim S, Yang J (2010a) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron. J Hazard Mater 176:1038–1043

    Article  CAS  Google Scholar 

  • Kim J, Lee C, Choi W (2010b) Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ Sci Technol 44(17):6849–6854

    Article  CAS  Google Scholar 

  • Kim S, Harzman C, Davis J, Hutcheson R, Broderick J, Marsh T, Tiedje J (2012) Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction. BMC Microbiol 12(1):1–20

    Article  CAS  Google Scholar 

  • Kim H, Leitch M, Naknakorn B, Tilton R (2017) Lowry Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. J Hazard Mater 322:136–144

    Article  CAS  Google Scholar 

  • Kirschling T, Gregory K, Minkley J, Edwin G, Lowry G, Tilton R (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480

    Article  CAS  Google Scholar 

  • Kitayama A (1997) A study on biodegradation of aromatic hydrocarbons. Doctoral thesis. The University of Tokyo, Tokyo

    Google Scholar 

  • Klimkova S, Cernik M, Lacinova L, Nosek J (2008) Application of nanoscale zero-valent iron for groundwater remediation: laboratory and pilot experiments. Nano 3(04):287–289

    Article  CAS  Google Scholar 

  • Knoth J, Kim S, Ettl G, Doty S (2014) Biological nitrogen fixation and biomass accumulation within poplar clones as a result of inoculations with diazotrophic endophyte consortia. New Phytol 201(2):599–609

    Article  CAS  Google Scholar 

  • Köber R, Hollert H, Hornbruch G, Jekel M, Kamptner A (2014) Nanoscale zero-valent iron flakes for groundwater treatment. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3239-0

  • Kocur C, Lomheim L, Boparai H, Chowdhury A, Weber K, Austrins L, Edwards E, Sleep B, O’Carroll D (2015) Contributions of abiotic and biotic dechlorination following carboxymethyl cellulose stabilized nanoscale zero valent iron injection. Environ Sci Technol 49(14):8648–8656

    Article  CAS  Google Scholar 

  • Kocur C, Lomheim L, Molenda O, Weber K, Austrins L, Sleep B, Boparai H, Edwards E, O'Carroll D (2016) Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero–valent iron injection. Environ Sci Technol 50:7658–7670

    Article  CAS  Google Scholar 

  • Koenig J, Boparai H, Lee M, O’Carroll D, Barnes R, Manefield M (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112

    Article  CAS  Google Scholar 

  • Koutsospyros A, Pavlov J, Fawcett J, Strickland D, Smolinski B, Braida W (2012) Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. J Hazard Mater 219:75–81

    Article  CAS  Google Scholar 

  • Krug T, O'Hara S, Walting M, Quinn J (2010) Emulsified zero-valent nano-scale iron treatment of chlorinated solvent DNAPL source areas. Final report. ESTCP. (Environmental Security Technology Certification Program) ESTCP Project ER-0431

  • Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467

    Article  CAS  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 236, Springer, 1–115

  • Lampron, KJ, Chiu PC, Cha DK (1998) Biological reduction of Trichloroethene supported by Fe(0). Bioremediat J 2(3–4):175–181

  • Lampron K, Chiu P, Cha D (2001) Reductive dehalogenation of chlorinated ethenes with elemental iron: the role of microorganisms. Water Res 35(13):3077–3084

    Article  CAS  Google Scholar 

  • Lan T, Fallatah A, Suiter E, Padalkar S (2017) Size controlled copper (I) oxide nanoparticles influence sensitivity of glucose biosensor. Sensors 17(9):1944

    Article  CAS  Google Scholar 

  • Lapeyrouse N, Liu M, Zou S, Booth G, Yestrebsky C (2019) Remediation of chlorinated alkanes by vitamin B12 and zero-valent iron. J Chem 2019:7565464

    Article  CAS  Google Scholar 

  • Larsen M, Burken J, Macháčková J, Karlson U, Trapp S (2008) Using tree core samples to monitor natural attenuation and plume distribution after a PCE spill. Environ Sci Technol 42:1711–1717

    Article  CAS  Google Scholar 

  • Lau J, Lennon J (2012) Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci 109(35):14058–14062

    Article  CAS  Google Scholar 

  • Laumann S, Micić V, Lowry G, Hofmann T (2013) Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60

    Article  CAS  Google Scholar 

  • Lawrence J (2006) Description, properties, and degradation of selected volatile organic compounds detected in ground water—a review of selected literature. U.S. Geological Survey, Reston http://pubs.usgs.gov/ofr/2006/1338/. Accessed 7 Mar 2020

  • Lee T, Tokunaga T, Suyama A, Furukawa K (2001) Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp strain Y-51 and zero-valent iron. J Biosci Bioeng 92:453–458

    Article  CAS  Google Scholar 

  • Lee P, Cheng D, West K, Alvarez-Cohen L, He J (2013) Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ Microbiol 15(8):2293–2305

    Article  CAS  Google Scholar 

  • Lee M, Wells E, Wong Y, Koenig J, Adrian L, Richnow H, Manefield M (2015) Relative contributions of dehalobacter and zerovalent iron in the degradation of chlorinated methanes. Environ Sci Technol 49:4481–4489

    Article  CAS  Google Scholar 

  • Lewis S, Lynch A, Bachas L, Hampson S, Ormsbee L, Bhattacharyya D (2009) Chelate-modified Fenton reaction for the degradation of trichloroethylene in aqueous and two-phase systems. Environ Eng Sci 26(4):849–859

    Article  CAS  Google Scholar 

  • Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J Am Chem Soc 129(15):4538–4539

    Article  CAS  Google Scholar 

  • Li T, Li S, Li Y, Jin Z (2009) Dechlorination of trichloroethylene in groundwater by nanoscale bimetallic Fe/Pd particles. J Water Resourc Protect 2:78–83

    Article  CAS  Google Scholar 

  • Li Q, Chen X, Zhuang J, Chen X (2016) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23(12):11533–11548

    Article  CAS  Google Scholar 

  • Li H, Y-f Q, Wang X-l, Yang J, Yu Y-j, Y-q C, Y-l L (2017) Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions. Chemosphere 169:534–541

    Article  CAS  Google Scholar 

  • Li C, Lu Q, Zhan C, Tariq M, Huang K, Liu F, Zhu F, Liu G, Cui C, Lin K (2019a) Efficient novel amphiphilic double shells layer coupled with nanoscale zero-valent composite for the degradation of trichloroethylene. Sci Total Environ 659:821–827

    Article  CAS  Google Scholar 

  • Li B, Chen X, Li K, Zhang C, He Y, Du R, Wang J, Chen L (2019b) Coupling membrane and Fe–Pd bimetallic nanoparticles for trichloroethene removing from water. J Ind Eng Chem 78:198–209

    Article  CAS  Google Scholar 

  • Lien H-L, Zhang W-X (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A Physicochem Eng Asp 191:97–105

    Article  CAS  Google Scholar 

  • Lien H-L, Zhang W-X (2007) Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl Catal B Environ 77(1–2):110–116

    Article  CAS  Google Scholar 

  • Limmer M, Wilson J, Westenberg D, Lee A, Siegman M, Burken J (2018) Phytoremediation removal rates of benzene, toluene, and chlorobenzene. Int J Phytoremed 20(7):666–674

    Article  CAS  Google Scholar 

  • Lin K, Mdlovu N, Chen C, Chiang C, Dehvari K (2018) Degradation of TCE, PCE, and 1,2-DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. J Clean Prod 175:456–466

    Article  CAS  Google Scholar 

  • Lin X, Li Z, Liang B, Zhai H, Cai W, Nan J, Wang A (2019) Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation. Water Res 162:236–245

    Article  CAS  Google Scholar 

  • Little C, Palumbo A, Herbes S, Lidstrom M, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54:951–956

    Article  CAS  Google Scholar 

  • Liu Y, Majetich S, Tilton R, Sholl D, Lowry G (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345

    Article  CAS  Google Scholar 

  • Liu R, Dai Y, Sun L (2015) Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. PLoS One 10(3):e0120369

    Article  CAS  Google Scholar 

  • Löffler F, Yan J, Ritalahti K, Adrian L, Edwards E, Konstantinidis K, Müller J, Fullerton H, Zinder S, Spormann A (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63(2):625–635

    Article  CAS  Google Scholar 

  • Logan B, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690

    Article  CAS  Google Scholar 

  • Lorah MMM, Olsen LD, Smith BL, Johnson MA, Fleck WB (1997) Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland. Water-Resources Investigations Report 97-4171. Aberdeen Proving Ground, MD, US Department of the Interior, US Geological Survey

  • Loraine G (2001) Effects of alcohols, anionic and nonionic surfactants on the reduction of PCE and TCE by zero-valent iron. Water Res 35(6):1453–1460

    Article  CAS  Google Scholar 

  • Lourencetti C, Grimalt J, Marco E, Fernandez P, Font-Ribera L, Villanueva C (2012) Trihalomethanes in chlorine and bromine disinfected swimming pools: air–water distributions and human exposure. Environ Int 45:59–67

    Article  CAS  Google Scholar 

  • Luo J, He F, Liu S (2017) Catalytic combustion of chlorobenzene over core–shell Mn/TiO2 catalysts. J Porous Mater 24(3):821–828

    Article  CAS  Google Scholar 

  • Ma X, Burken J (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37(11):2534–2539

  • Ma X, Richter A, Albers S, Burken J (2004) Phytoremediation of MTBE with hybrid poplar trees. Int J Phytoremed 6(2):157–167

    Article  CAS  Google Scholar 

  • Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27(11):989–992

  • Mangayayam M, Perez J, Dideriksen K, Freeman H, Bovet N, Benning L, Tobler D (2019) Structural transformation of sulfidized zerovalent iron and its impact on long-term reactivity. Environ Sci: Nano 6(11):3422–3430

    CAS  Google Scholar 

  • Maphosa F, de Vos W, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28(6):308–316

    Article  CAS  Google Scholar 

  • Marco-Urrea E, Nijenhuis I, Adrian L (2011) Transformation and carbon isotope fractionation of tetra-and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1. Environ Sci Technol 45(4):1555–1562

    Article  CAS  Google Scholar 

  • Martino L, Yan E, LaFreniere L (2019) A hybrid phytoremediation system for contaminants in groundwater. Environ Earth Sci 78(24):664

    Article  Google Scholar 

  • Matheson L, Tratnyek P (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053

    Article  CAS  Google Scholar 

  • Mattes T, Alexander A, Coleman N (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution. FEMS Microbiol Rev 34(4):445–475

    Article  CAS  Google Scholar 

  • Maupin I, Pinard L, Mijoin J, Magnoux P (2012) Bifunctional mechanism of dichloromethane oxidation over Pt/Al2O3: CH2Cl2 disproportionation over alumina and oxidation over platinum. J Catal 291:104–109

    Article  CAS  Google Scholar 

  • Maurer-Jones M, Gunsolus I, Murphy C, Haynes C (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    Article  CAS  Google Scholar 

  • Maymó-Gatell X, Anguish T, Zinder S (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65(7):3108–3113

    Article  Google Scholar 

  • McCarty P (1994) Groundwater treatment for chlorinated solvents. Handbook of bioremediation 87–116

  • Mdlovu N, Lin K, Dwitya S, Chen C, Chiang C (2018) Decontamination of 1,2-dichloroethane DNAPL in contaminated groundwater by polymer-modified zero-valent iron nanoparticles. Top Catal 61(15–17):1653–1664

    Article  CAS  Google Scholar 

  • Mdlovu N, Lin K, Chen C, Mavuso F, Kunene S, Espinoza M (2019) In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles. Chemosphere 224:816–826

    Article  CAS  Google Scholar 

  • Meeks N, Smule V, Stevens C, Bhattacharyya D (2012) Iron-based nanoparticles for toxic organic degradation: silica platform and green synthesis. Ind Eng Chem Res 51:9581–9590

    Article  CAS  Google Scholar 

  • Micić V, Schmid D, Bossa N, Gondikas A, Velimirovic M, von der Kammer F, Wiesner M, Hofmann T (2017) Impact of sodium humate coating on collector surfaces on deposition of polymer-coated nanoiron particles. Environ Sci Technol 51(16):9202–9209

    Article  CAS  Google Scholar 

  • Moccia E, Intiso A, Cicatelli A, Proto A, Guarino F, Iannece P, Castiglione S, Rossi F (2017) Use of Zea mays L. in phytoremediation of trichloroethylene. Environ Sci Pollut Res 24(12):11053–11060

    Article  CAS  Google Scholar 

  • Mohammadi M, Sabbaghi S (2014) Photo-catalytic degradation of 2,4-DCP wastewater using MWCNT/TiO2 nano-composite activated by UV and solar light. Environ Nanotechnol Monit Manag 1:24–29

    Google Scholar 

  • Mohmood I, Lopes C, Lopes I, Ahmad I, Duarte A, Pereira E (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20(3):1239–1260

    Article  CAS  Google Scholar 

  • Mohn W, Tiedje J (1992) Microbial reductive dehalogenation. Microbiol Mol Biol Rev 56(3):482–507

    CAS  Google Scholar 

  • Mohsenzadeh M, Mirbagheri S, Sabbaghi S (2019) Photocatalytic degradation of 1,2-dichloroethane using immobilized PAni-TiO2 nanocomposite in a pilot-scale packed bed reactor. Desalin Water Treat 155:72–83

    Article  CAS  Google Scholar 

  • Moorhead K, Reddy K (1988) Oxygen transport through selected aquatic macrophytes. J Environ Qual 17(1):138–142

    Article  Google Scholar 

  • Moran M, Zogorski J, Squillace P (2007) Chlorinated solvents in groundwater of the United States. Environ Sci Technol 41(1):74–81

    Article  CAS  Google Scholar 

  • Mueller N, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6(6):395–400

    Article  CAS  Google Scholar 

  • Mukherjee P, Roy P (2012) Identification and characterisation of a bacterial isolate capable of growth on trichloroethylene as the sole carbon source. Adv Microbiol 2(03):284

    Article  CAS  Google Scholar 

  • Newman L, Strand S, Choe N, Duffy J, Ekuan G, Ruszaj M, Shurtleff B, Wilmoth J, Heilman P, Gordon M (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31(4):1062–1067

    Article  CAS  Google Scholar 

  • Newman L, Wang X, Muiznieks I, Ekuan G, Ruszaj M, Cortellucci R, Domroes D, Karscig G, Newman T, Crampton R (1999) Remediation of trichloroethylene in an artificial aquifer with trees: a controlled field study. Environ Sci Technol 33(13):2257–2265

    Article  CAS  Google Scholar 

  • Nie X, Liu J, Zeng X, Yue D (2013) Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles. J Environ Sci 25(3):473–478

    Article  CAS  Google Scholar 

  • Nijenhuis I, Nikolausz M, Köth A, Felföldi T, Weiss H, Drangmeister J, Großmann J, Kästner M, Richnow H (2007) Assessment of the natural attenuation of chlorinated ethenes in an anaerobic contaminated aquifer in the Bitterfeld/Wolfen area using stable isotope techniques, microcosm studies and molecular biomarkers. Chemosphere 67(2):300–311

    Article  CAS  Google Scholar 

  • Noell A (2009) Estimation of sequential degradation rate coefficients for chlorinated ethenes. Pract Period Hazard Toxic Radioactive Waste Manage 13(1):35–44

    Article  CAS  Google Scholar 

  • Nutt M, Hughes J, Wong M (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353

    Article  CAS  Google Scholar 

  • Nutt M, Heck K, Alvarez P, Wong M (2006) Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl Catal B Environ 69:115–125

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  CAS  Google Scholar 

  • Olaniran A, Pillay D, Pillay B (2008) Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa. Chemosphere 73(1):24–29

    Article  CAS  Google Scholar 

  • Ollis D, Al-Ekabi H (1993) Photocatalytic purification and treatment of water and air: proceedings of the 1st international conference on TiO2 photocatalytic purification and treatment of water and air, London, Ontario, Canada, 8-13 November, 1992, Elsevier Science Ltd.

  • Orchard B, Doucette W, Chard J, Bugbee B (2000a) A novel laboratory system for determining fate of volatile organic compounds in planted systems. Environ Toxicol Chem: An International Journal 19(4):888–894

    Article  CAS  Google Scholar 

  • Orchard B, Doucette W, Chard J, Bugbee B (2000b) Uptake of TCE by hybrid poplar trees grown hydroponically in flow through plant growth chambers. Environ Toxicol Chem 19(4):895–903

    Article  CAS  Google Scholar 

  • Ortega-Liebana M, Hueso J, Ferdousi S, Arenal R, Irusta S, Yeung K, Santamaria J (2017) Extraordinary sensitizing effect of co-doped carbon nanodots derived from mate herb: application to enhanced photocatalytic degradation of chlorinated wastewater compounds under visible light. Appl Catal B Environ 218:68–79

    Article  CAS  Google Scholar 

  • Pálmai M, Zahran E, Angaramo S, Bálint S, Pászti Z, Knecht M, Bachas L (2017) Pd-decorated m-BiVO4/BiOBr ternary composite with dual heterojunction for enhanced photocatalytic activity. J Mater Chem A 5(2):529–534

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63(4):437–456

    Article  CAS  Google Scholar 

  • Pant P, Pant S (2010) A review: advances in microbial remediation of trichloroethylene (TCE). J Environ Sci 22(1):116–126

    Article  CAS  Google Scholar 

  • Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  CAS  Google Scholar 

  • Patil S, Shedbalkar U, Truskewycz A, Chopade B, Ball A (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Patterson B, Lee M, Bastow T, Wilson J, Donn M, Furness A, Manefield M (2016) Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI. J Contam Hydrol 188:1–11

    Article  CAS  Google Scholar 

  • Pecoraino G, Scalici L, Avellone G, Ceraulo L, Favara R, Candela E, Provenzano M, Scaletta C (2008) Distribution of volatile organic compounds in Sicilian groundwaters analysed by head space-solid phase micro extraction coupled with gas chromatography mass spectrometry (SPME/GC/MS). Water Res 42(14):3563–3577

    Article  CAS  Google Scholar 

  • Pei X, Jiang C, Chen W (2019) Enhanced hydrolysis of 1,1,2,2-tetrachloroethane by multi-walled carbon nanotube/TiO2 nanocomposites: the synergistic effect. Environ Pollut 255:113211

    Article  CAS  Google Scholar 

  • Peng Y, Chen T, Wu C, Chang Y, Chen K (2019) Dispersant-modified iron nanoparticles for mobility enhancement and TCE degradation: a comparison study. Environ Sci Pollut Res 26(33):34157–34166

    CAS  Google Scholar 

  • Phenrat T, Schoenfelder D, Kirschling T, Tilton R, Lowry G (2018) Adsorbed poly (aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environ Sci Pollut Res 25(8):7157–7169

    Article  CAS  Google Scholar 

  • Pillai H, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot 7(05):734. https://doi.org/10.4236/jep.2016.75066

    Article  CAS  Google Scholar 

  • Pitkäaho S, Nevanperä T, Matejova L, Ojala S, Keiski R (2013) Oxidation of dichloromethane over Pt, Pd, Rh, and V2O5 catalysts supported on Al2O3, Al2O3–TiO2 and Al2O3–CeO2. Appl Catal B Environ 138:33–42

    Article  CAS  Google Scholar 

  • Pöritz M, Gori T, Wubet T, Tarkka M, Buscot F, Nijenhuis I, Lechner U, Adrian L (2013) Genome sequences of two dehalogenation specialists–Dehalococcoides mccartyi strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Qian L, Chen Y, Ouyang D, Zhang W, Han L, Yan J, Kvapil P, Chen M (2020) Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Sci Total Environ 698:134215

    Article  CAS  Google Scholar 

  • Qian Y, Zhang J, Zhang Y, Chen J, Zhou X (2016) Degradation of 2,4-dichlorophenol by nanoscale calcium peroxide: implication for groundwater remediation. Sep Purif Technol 166:222–229

    Article  CAS  Google Scholar 

  • Qu X, Alvarez P, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946

    Article  CAS  Google Scholar 

  • Reddy K (2010) Nanotechnology for site remediation: dehalogenation of organic pollutants in soils and groundwater by nanoscale iron particles. Proc 6th Int Congress Environ Geotecn

  • Reddy K, Khodadoust A, Darko-Kagya K (2011) Transport and reactivity of lactate-modified nanoscale iron particles in PCP contaminated soils. J Hazard Toxic Radioactive Waste 16:68–74

    Article  CAS  Google Scholar 

  • Reichenauer T, Germida J (2008) Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem 1(8–9):708–717

    Article  CAS  Google Scholar 

  • Ribeiro S (2016) Reductive dechlorination of TCE and cis-DCE by zero-valent iron and iron-based bimetallic reductants, PhD. diss. Universidade de Évora

  • Rodriguez R, Redman R, Henson J (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9(3):261–272

    Article  Google Scholar 

  • Rosenthal H, Adrian L, Steiof M (2004) Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains. Chemosphere 55(5):661–669

    Article  CAS  Google Scholar 

  • Ruan X, Liu H, Wang J, Zhao D, Fan X (2019) A new insight into the main mechanism of 2,4-dichlorophenol dechlorination by Fe/Ni nanoparticles. Sci Total Environ 697:133996

    Article  CAS  Google Scholar 

  • Ryan R, Germaine K, Franks A, Ryan D, Dowling D (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    Article  CAS  Google Scholar 

  • Ryoo D, Shim H, Canada K, Barbieri P, Wood T (2000) Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18(7):775–778

    Article  CAS  Google Scholar 

  • Rysavy J, Yan T, Novak P (2005) Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Res 39(4):569–578

    Article  CAS  Google Scholar 

  • San Román I, Galdames A, Alonso M, Bartolome L, Vilas J, Alonso R (2016) Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case. Sci Total Environ 565:795–803

    Article  CAS  Google Scholar 

  • Sasson Y (2009) Formation of carbon-halogen bonds. In Patai’s chemistry of functional groups. John Wiley and Sons

  • Sayavedra-Soto L, Gvakharia B, Bottomley P, Arp D, Dolan M (2010) Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol 86(2):435–444

    Article  CAS  Google Scholar 

  • Schaefer C, Condee CW, Vainberg S, Steffan RJ (2009) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75:141–148

    Article  CAS  Google Scholar 

  • Schiwy A, Maes H, Koske D, Flecken M, Schmidt K, Schell H, Tiehm A, Kamptner A, Thümmler S, Stanjek H, Heggen M, Dunin-Borkowski R, Braun J, Schäffer A, Hollert H (2016) The ecotoxic potential of a new zero-valent iron nanomaterial, designed for the elimination of halogenated pollutants, and its effect on reductive dechlorinating microbial communities. Environ Pollut 216:419–427

    Article  CAS  Google Scholar 

  • Schmal M, Souza M, Alegre V, da Silva M, César D, Perez C (2006) Methane oxidation–effect of support, precursor and pretreatment conditions–in situ reaction XPS and DRIFT. Catal Today 118(3–4):392–401

    Article  CAS  Google Scholar 

  • Schmidt KR, Tiehm A (2008) Natural attenuation of chloroethenes: identification of sequential reductive/oxidative biodegradation by microcosm studies. Water Sci Technol 58:1137–1145

  • Schnabel W, Dietz A, Burken J, Schnoor J, Alvarez P (1997) Uptake and transformation of trichloroethylene by edible garden plants. Water Res 31(4):816–824

    Article  CAS  Google Scholar 

  • Schöftner P, Watzinger A, Holzknecht P, Wimmer B, Reichenauer T (2016) Transpiration and metabolisation of TCE by willow plants–a pot experiment. Int J Phytoremed 18(7):686–692

    Article  CAS  Google Scholar 

  • Schrick B, Blough J, Jones A, Mallouk T (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Seshadri R, Adrian L, Fouts D, Eisen J, Phillippy A, Methe B, Ward N, Nelson W, Deboy R, Khouri H (2005) Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science 307(5706):105–108

    Article  CAS  Google Scholar 

  • Shang T, Doty S, Wilson A, Howald W, Gordon M (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065

    Article  CAS  Google Scholar 

  • Shi Z, Nurmi J, Tratnyek P (2011) Effects of nano zero-valent iron on oxidation–reduction potential. Environ Sci Technol 45(4):1586–1592

    Article  CAS  Google Scholar 

  • Shi Z, Yang P, Tao F, Zhou R (2016) New insight into the structure of CeO2–TiO2 mixed oxides and their excellent catalytic performances for 1,2-dichloroethane oxidation. Chem Eng J 295:99–108

    Article  CAS  Google Scholar 

  • Shim H, Ryoo D, Barbieri P, Wood TK (2001) Aerobic degradation of mixtures of tetrachloroethylene, trichloroethylene, dichloroethylenes, and vinyl chloride by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Appl Microbiol Biotechnol 56(1–2):265–269

    Article  CAS  Google Scholar 

  • Shimp J, Tracy J, Davis L, Lee E, Huang W, Erickson L, Schnoor J (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci Technol 23(1):41–77

    Article  CAS  Google Scholar 

  • Shin M, Yang J, Park G, Baek K (2011) Influence of mixed-surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Korean J Chem Eng 28(4):1047

    Article  CAS  Google Scholar 

  • Sivakumar V, Suresh R, Giribabu K, Narayanan V (2015) BiVO4 nanoparticles: preparation, characterization and photocatalytic activity. Cogent Chemistry 1(1):1074647

    Article  Google Scholar 

  • Song H, Carraway E (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Technol 39(16):6237–6245

    Article  CAS  Google Scholar 

  • Song B, Xu P, Chen M, Tang W, Zeng G, Gong J, Zhang P, Ye S (2019) Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit Rev Environ Sci Technol 49(9):791–824

    Article  Google Scholar 

  • Sowers K, May H (2013) In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet? Curr Opin Biotechnol 24:482–488

    Article  CAS  Google Scholar 

  • Stroo H, Leeson A, Marqusee J, Johnson P, Ward C, Kavanaugh M, Sale T, Newell C, Pennell K, Lebrón C (2012) Chlorinated ethene source remediation: lessons learned, ACS Publications

  • Strycharz S, Newman L (2009) Use of native plants for remediation of trichloroethylene: II. Coniferous trees. International Journal of Phytoremediation 11(2):171–186

    Article  CAS  Google Scholar 

  • Strycharz S, Woodard M, Johnson J, Nevin K, Sanford R, Löffler F, Lovley D (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74(19):5943–5947

    Article  CAS  Google Scholar 

  • Su C, Puls R, Krug T, Watling M, O’Hara S, Quinn J, Ruiz N (2012) A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Res 46:5071–5084

    Article  CAS  Google Scholar 

  • Sun Y, Li X, Cao J, Zhang W, Wang H (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120(1–3):47–56

    Article  CAS  Google Scholar 

  • Swift D, Rothermel J, Peterson L, Orr B, Bures G, Weidhaas J (2012) Remediating TCE-contaminated groundwater in low-permeability media using hydraulic fracturing to emplace zero-valent iron/organic carbon amendment. Remediation. Wiley Online Library. https://doi.org/10.1002/rem.21310

  • Tachikawa T, Majima T (2009) Single-molecule fluorescence imaging of TiO2 photocatalytic reactions. Langmuir 25(14):7791–7802

    Article  CAS  Google Scholar 

  • Tartakovsky B, Manuel M, Guiot S (2003) Trichloroethylene degradation in a coupled anaerobic/aerobic reactor oxygenated using hydrogen peroxide. Environ Sci Technol 37(24):5823–5828

    Article  CAS  Google Scholar 

  • Tasharrofi S., Hassani S, Taghdisian H, Sobat Z (2018) Environmentally friendly stabilized nZVI-composite for removal of heavy metals. New Polymer Nanocomposites For Environmental Remediation, Elsevier, 623–642

  • Tee Y-T, Grulke E, Bhattacharyya D (2005) Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res 44:7062–7070

    Article  CAS  Google Scholar 

  • Terzi K, Sikinioti-Lock A, Gkelios A, Tzavara D, Skouras A, Aggelopoulos C, Klepetsanis P, Antimisiaris S, Tsakiroglou C (2016) Mobility of zero valent iron nanoparticles and liposomes in porous media. Colloids Surf A Physicochem Eng Asp 506:711–722

    Article  CAS  Google Scholar 

  • Thijs S, Sillen W, Weyens N, Vangronsveld J (2016) Phytoremediation: state-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int J Phytoremed 19(1):23–38

  • Tian H, Liang Y, Zhu T, Zeng X, Sun Y (2018) Surfactant-enhanced PEG-4000-NZVI for remediating trichloroethylene-contaminated soil. Chemosphere 195:585–593

    Article  CAS  Google Scholar 

  • Tian H, Liang Y, Yang D, Sun Y (2020) Characteristics of PVP–stabilised NZVI and application to dechlorination of soil–sorbed TCE with ionic surfactant. Chemosphere 239:124807

    Article  CAS  Google Scholar 

  • Tiehm A, Schmidt K (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 22(3):415–421

    Article  CAS  Google Scholar 

  • Tkachenko I, Tkachenko S, Lokteva E, Mamleeva N, Lunin V (2020) Two-stage ozonation–adsorption purification of ground water from trichloroethylene and tetrachloroethylene with application of commercial carbon adsorbents. Ozone Sci Eng 42(4):1–14

    Article  CAS  Google Scholar 

  • Tratnyek P, Sarathy V (2008) Fate and remediation of 1,2,3-trichloropropane: Proceedings of the Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2008). published by Battelle, Columbus, OH. https://www.battelle.org/chlorcon

  • Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9(1):85–92

    Article  Google Scholar 

  • Uchino Y, Miura T, Hosoyama A, Ohji S, Yamazoe A, Ito M, Takahata Y, Suzuki K, Fujita N (2015) Complete genome sequencing of Dehalococcoides sp. strain UCH007 using a differential reads picking method. Stand Genomic Sci 10(1):102

    Article  CAS  Google Scholar 

  • Vainberg S, Condee C, Steffan R (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36(9):1189–1197

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  Google Scholar 

  • Velimirovic M, Tosco T, Uyttebroek M, Luna M, Gastone F, De Boer C, Klaas N, Sapion H, Eisenmann H, Larsson P, Braun J, Sethi R, Bastiaens L (2014) Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. J Contam Hydrol 164:88–99

    Article  CAS  Google Scholar 

  • Velimirovic M, Auffan M, Carniato L, Batka V, Schmid D, Wagner S, Borschneck D, Proux O, Von Der Kammer F, Hofmann T (2018) Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. Sci Total Environ 618:1619–1627

    Article  CAS  Google Scholar 

  • Vogel T, McCarty P (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol 49(5):1080–1083

    Article  CAS  Google Scholar 

  • Wacławek S, Nosek J, Cádrová L, Antoš V, Černík M (2015) Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S 22(4):577–587

    Google Scholar 

  • Walter M, Warren E, McKone J, Boettcher S, Mi Q, Santori E, Lewis N (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  CAS  Google Scholar 

  • Wan H, Islam M, Briot N, Schnobrich M, Pacholik L, Ormsbee L, Bhattacharyyaa L (2020) Pd/Fe nanoparticle integrated PMAA-PVDF membranes for chloro-organic remediation from synthetic and site groundwater. J Membr Sci 594:117454. https://doi.org/10.1016/j.memsci.2019.117454

    Article  CAS  Google Scholar 

  • Wang X, Chen C, Chang Y, Liu H (2009) Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J Hazard Mater 161:815–823

    Article  CAS  Google Scholar 

  • Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5(18):8326–8339

    Article  CAS  Google Scholar 

  • Wang S, Chen S, Wang Y, Low A, Lu Q, Qiu R (2016) Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (bio-nZVI-RD): a perfect marriage for the remediation of organohalide pollutants? Biotechnol Adv 34(8):1384–1395

    Article  CAS  Google Scholar 

  • Wang H, Cai S, Shan L, Zhuang M, Li N, Quan G, Yan J (2019) Adsorptive and reductive removal of chlorophenol fromwastewater by biomass-derived mesoporous carbon-supported sulfide nanoscale zerovalent iron. Nanomaterials 9:1786. https://doi.org/10.3390/nano9121786

    Article  CAS  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, van der Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158(9):2915–2919

    Article  CAS  Google Scholar 

  • Wittlingerova Z, Machackova J, Petruzelkova A, Trapp S, Vlk K, Zima J (2013) One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň Site, Northern Bohemia. Environ Sci Pollut Res 20(2):834–847

    Article  CAS  Google Scholar 

  • Wu Y, Liu P, Hsu Y, Whang L, Lin T, Hung W, Cho K (2019a) Application of molecular biological tools for monitoring efficiency of trichloroethylene remediation. Chemosphere 233:697–704

    Article  CAS  Google Scholar 

  • Wu N, Zhang W, Wei W, Yang S, Wang H, Sun Z, Song Y, Li P, Yang Y (2019b) Field study of chlorinated aliphatic hydrocarbon degradation in contaminated groundwater via micron zero-valent iron coupled with biostimulation. Chem Eng J 384:123349

    Article  CAS  Google Scholar 

  • Xi G, Yue B, Cao J, Ye J (2011) Fe3O4/WO3 hierarchical core–shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J 17(18):5145–5154

    Article  CAS  Google Scholar 

  • Xia H, Wu L, Tao Q (2003) A review on phytoremediation of organic contaminants. Ying yong sheng tai xue bao = The Journal of Applied Ecology 14(3):457–460

    CAS  Google Scholar 

  • Xiu Z, Gregory K, Lowry G, Alvarez P (2010a) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44:7647–1253

    Article  CAS  Google Scholar 

  • Xiu Z, Jin Z, Li T, Mahendra S, Lowry G, Alvarez P (2010b) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101:1141–1146

    Article  CAS  Google Scholar 

  • Xu J, Dozier A, Bhattacharyya D (2005) Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7:449–467

    Article  CAS  Google Scholar 

  • Xu J, Wang Y, Weng C, Bai W, Jiao Y, Kaegi R, Lowry G (2019) Reactivity, selectivity, and long-term performance of sulfidized nanoscale zerovalent iron with different properties. Environ Sci Technol 53(10):5936–5945

    Article  CAS  Google Scholar 

  • Xu W, Li Z, Shi S, Qi J, Cai S, Yu Y, O’Carroll D, He F (2020) Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: characterization and trichloroethene dechlorination. Appl Catal B Environ 262:118303

    Article  CAS  Google Scholar 

  • Yan W, Herzing A, Li X, Kiely C, Zhang W (2010) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44(11):4288–4294

    Article  CAS  Google Scholar 

  • Yan W, Lien H, Koel B, Zhang W (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Process Impacts 15(1):63–77

    Article  CAS  Google Scholar 

  • Yan N, Liu F, Liu B, Brusseau M (2018) Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process. Environ Sci Pollut Res 25(32):32088–32095

    Article  CAS  Google Scholar 

  • Yang Y, McCarty P (2000) Biologically enhanced dissolution of tetrachloroethene DNAPL. Environ Sci Technol 34(14):2979–2984

    Article  CAS  Google Scholar 

  • Yang X, Zhang C, Liu F, Tang J, Huang F, Zhang L (2019) Diversity in the species and fate of chlorine during TCE reduction by two nZVI with non-identical anaerobic corrosion mechanism. Chemosphere 230:230–238

    Article  CAS  Google Scholar 

  • Ye M, Li C, Liu X, Xu W, Zhu T, Chen G (2018) Catalytic oxidation of chlorobenzene over ruthenium-ceria bimetallic catalysts. Catalysts 8(116):116. https://doi.org/10.3390/catal8030116

    Article  CAS  Google Scholar 

  • Yee D, Maynard J, Wood T (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl Environ Microbiol 64(1):112–118

    Article  CAS  Google Scholar 

  • Yu R, Andrachek R, Lehmicke L, Freedman D (2018) Remediation of chlorinated ethenes in fractured sandstone by natural and enhanced biotic and abiotic processes: a crushed rock microcosm study. Sci Total Environ 626:497–506

    Article  CAS  Google Scholar 

  • Yuan R, Chen T, Fei E, Lin J, Ding Z, Long J, Zhang Z, Fu X, Liu P, Wu L (2011) Surface chlorination of TiO2-based photocatalysts: a way to remarkably improve photocatalytic activity in both UV and visible region. ACS Catal 1(3):200–206

    Article  CAS  Google Scholar 

  • Zahran E, Bedford N, Nguyen M, Chang Y, Guiton B, Naik R, Bachas L, Knecht M (2014) Light-activated tandem catalysis driven by multicomponent nanomaterials. J Am Chem Soc 136(1):32–35

    Article  CAS  Google Scholar 

  • Zanaroli G, Negroni A, Vignola M, Nuzzo A, Shu H, Fava F (2012) Enhancement of microbial reductive dechlorination of polychlorinated biphenyls (PCBs) in a marine sediment by nanoscale zerovalent iron (NZVI) particles. J Chem Technol Biotechnol 87(9):1246–1253

    Article  CAS  Google Scholar 

  • Zemb O, Lee M, Low A, Manefield M (2010) Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane. Appl Microbiol Biotechnol 88:319–325

    Article  CAS  Google Scholar 

  • Zeppilli M, Dell’Armi E, Cristiani L, Petrangeli Papini M, Majone M (2019) Reductive/oxidative sequential bioelectrochemical process for perchloroethylene removal. Water 11(12):2579

    Article  CAS  Google Scholar 

  • Zhang W, Wang C, Lien H (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40(4):387–395

    Article  CAS  Google Scholar 

  • Zhang Z, Cissoko N, Wo J, Xua X (2009) Factors influencing the dechlorination of 2,4-dichlorophenol by Ni–Fe nanoparticles in the presence of humic acid. J Hazard Mater 165:78–86

    Article  CAS  Google Scholar 

  • Zhang M, He F, Zhao D, Hao X (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45(7):2401–2414

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu J, Yu X, Wei J, Hu L, Dai S (2012) The optical and electrochemical properties of CdS/CdSe co-sensitized TiO2 solar cells prepared by successive ionic layer adsorption and reaction processes. Sol Energy 86(3):964–971

    Article  CAS  Google Scholar 

  • Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 260:1100–1107

    Article  CAS  Google Scholar 

  • Zhang W, Jia N, Han X, Qiu Z, Lv S, Lin K, Ying W (2016a) A comparison of the dechlorination mechanisms and Ni release styles of chloroalkane and chloroalkene removal using nickel/iron nanoparticles. Environ Technol 37(16):2088–2098

    Article  CAS  Google Scholar 

  • Zhang K, Deng J, Liu Y, Xie S, Dai H (2016b) Photocatalytic removal of organics over BiVO4-based photocatalysts. Semiconductor photocatalysis-materials, mechanisms and applications, IntechOpen

  • Zhang X, Liu Y, Deng J, Zhang K, Yang J, Han Z, Dai H (2018) AuPd/3DOM TiO2 catalysts: good activity and stability for the oxidation of trichloroethylene. Catalysts 8(12):666. https://doi.org/10.3390/catal8120666

    Article  CAS  Google Scholar 

  • Zhang S, Yang N, Zhuang X, Ren L, Natarajan V, Cui Z, Si H, Xin X, Ni S, Zhan J (2019) Montmorillonite immobilized Fe/Ni bimetallic prepared by dry in-situ hydrogen reduction for the degradation of 4-chlorophenol. Sci Rep 9(1):1–9

    CAS  Google Scholar 

  • Zhao Z, Fang Y-L, Alvarez PJJ, Wong MS (2013) Degrading perchloroethene at ambient conditions using Pd and Pd-on-Au reduction catalysts. Applied Catalysis B: Environmental 140-141: 468–477

  • Zhao S, He J (2019) Reductive dechlorination of high concentrations of chloroethenes by a Dehalococcoides mccartyi strain 11G. FEMS Microbiol Ecol 95(1):1–9

    Article  CAS  Google Scholar 

  • Zhao S, Ding C, He J (2015) Detoxification of 1,1,2-trichloroethane to ethene by Desulfitobacterium and identification of its functional reductase gene. PLoS One 10(4):e0119507

    Article  CAS  Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266

    Article  CAS  Google Scholar 

  • Zhou G, Lan H, Song R, Xie H, Du Q (2014) Effects of preparation method on CeCu oxide catalyst performance. RSC Adv 4(92):50840–50850

    Article  CAS  Google Scholar 

  • Zhu B-W, Lim T-T (2007) Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: reactive sites, catalyst stability, particle aging, and regeneration. Environ Sci Technol 41:7523–7529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ebrahimbabaie performed the conceptualization of the article, Ebrahimbabaie and Pichtel performed the literature search and drafting of the text, and Pichtel critically revised the work and prepared the figures.

Corresponding author

Correspondence to John Pichtel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

No human subjects were involved in this study.

Informed consent

Not applicable.

Consent to publish

The authors have agreed with the content and have given explicit consent to submit this manuscript.

Additional information

Responsible Editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimbabaie, P., Pichtel, J. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. Environ Sci Pollut Res 28, 7710–7741 (2021). https://doi.org/10.1007/s11356-020-11598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11598-y

Keywords

Navigation