Skip to main content
Log in

Incorporation of Electrochemically Exfoliated Graphene Oxide and TiO2 into Polyvinylidene Fluoride-Based Nanofiltration Membrane for Dye Rejection

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this work, the novel direct synthesis method of dimethylacetamide-based graphene oxide (GO) was performed through electrochemical exfoliation assisted by commercially available single-tail sodium dodecyl sulphate (SDS) surfactant. Then, the synthesised GO (SDS–GO) was incorporated into polyvinylidene fluoride (PVDF) solution to produce a nanofiltration (NF) membrane through the phase immersion method. The addition of GO into the preparation of membrane solution alters the membrane morphology and improves the hydrophilicity. TiO2 was also used as an additive for the NF membrane fabrication to further increase the membrane hydrophilicity. The fabricated PVDF/SDS–GO/TiO2 and PVDF/SDS–GO NF membranes were compared with pure PVDF membrane. Then, the fabricated NF membranes were tested for methylene blue (MB) rejection with 10 ppm MB concentration. On the basis of the dead-end cell measurement operated at the pressure of 2 bar, the PVDF/SDS–GO/TiO2 presents high MB rejection (92.76%) and the highest dye flux (7.770 L/m2 h). This dye flux value was sevenfold higher than that of pure PVDF membrane (1.146 L/m2 h) which was due to the utilisation of both GO and TiO2 that improved the membrane hydrophilicity as indicated by the lowest contact angle (64.0 ± 0.11°). High porosity (57.46%) also resulted in the highest water permeability (4.187 L/m2 h bar) of the PVDF/SDS–GO/TiO2 NF membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-gharabli, S., Mavukkandy, M. O., Kujawa, J., Nunes, S. P., & Arafat, H. A. (2017). Activation of PVDF membranes through facile hydroxylation of the polymeric dope. Journal of Materials Research, 32(22), 4219–4231.

    Article  CAS  Google Scholar 

  • Balachandran, U., & Eror, N. G. (1982). Raman spectra of titanium dioxide. Journal of Solid State Chemistry, 42, 276–282.

    Article  CAS  Google Scholar 

  • Bohara, B. B., Batra, A. K., Arun, K. J., Aggarwal, M. D., & III, C. F. (2017). Fabrication and characterization of polyvinylidene fluoride trifluoroethylene/samarium oxide (Sm2O3) nanocomposite film. Advanced Science, Engineering and Medicine, 9, 1–6.

    Article  CAS  Google Scholar 

  • Buonomenna, M. G., Macchi, P., Davoli, M., & Drioli, E. (2007). Poly(vinylidene fluoride) membranes by phase inversion : the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal, 43, 1557–1572.

    Article  CAS  Google Scholar 

  • Buonomenna, M. G., Choi, S.-H., Galiano, F., & Drioli, E. (2011). Membranes prepared via phase inversion.

    Book  Google Scholar 

  • Cao, X., Ma, J., Shi, X., & Ren, Z. (2006). Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Applied Surface Science, 253, 2003–2010.

    Article  CAS  Google Scholar 

  • Darwish, A. A. A., Rashad, M., & Al-aoh, H. A. (2019). Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamics studies. Dyes and Pigments, 160, 563–571.

    Article  CAS  Google Scholar 

  • Elashmawi, I. S., & Gaabour, L. H. (2015). Raman, morphology and electrical behavior of nanocomposites based on PEO/PVDF with multi-walled carbon nanotubes. Results in Physics, 5, 105–110.

    Article  Google Scholar 

  • Ghaffar, A., Zhang, L., Zhu, X., & Chen, B. (2018). Porous PVdF/GO nanofibrous membranes for selective separation and recycling of charged organic dyes from water. Environmental Science & Technology, 52(7), 4265–4274.

    Article  CAS  Google Scholar 

  • Hilal, N., Ismail, A. F., Matsuura, T., & Oatley-Radcliffe, D. (2017). Membrane characterization.

    Google Scholar 

  • Hu, M., & Mi, B. (2013). Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 47(8), 3715–3723.

    Article  CAS  Google Scholar 

  • Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., et al. (2016). The hidden second oxidation step of Hummers method. Chemistry of Materials, 28(3), 756–764.

    Article  CAS  Google Scholar 

  • Kim, J. F., Jung, J. T., Wang, H., Drioli, E., & Lee, Y. (2017). 1.15 Effect of solvents on membrane fabrication via thermally induced phase separation (TIPS): thermodynamic and kinetic perspectives. In Comprehensive membrane science and engineering II (Vol. 1, pp. 386–417). Elsevier Ltd.

  • Kumaran, R., Alagar, M., Kumar, S. D., Subramanian, V., & Dinakaran, K. (2015). Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms. Applied Physics Letter, 107, 113107-1-5.

    Article  Google Scholar 

  • Liu, J., Fu, X., Cao, D.-P., Mao, L., Wang, J., Mu, D., et al. (2015). Stacked graphene–TiO2 photoanode via electrospray deposition for highly efficient dye-sensitized solar cells. Organic Electronics, 23, 158–163.

    Article  CAS  Google Scholar 

  • Madaeni, S. S., & Taheri, A. H. (2011). Effect of casting solution on morphology and performance of PVDF microfiltration membranes. Chemical Engineering Technology, 34(8), 1328–1334.

    Article  CAS  Google Scholar 

  • Makertihartha, I. G. B. N., Rizki, Z., Zunita, M., & Dharmawijaya, P. T. (2017). Dyes removal from textile based nanofiltration. International Seminar on Fundamental and Application of Chemical Engineering, 110006, 1–8.

    Google Scholar 

  • Méricq, J.-P., Mendret, J., Brosillon, S., & Faur, C. (2015). High performance PVDF-TiO2 membranes for water treatment. Chemical Engineering Science, 123, 283–291.

    Article  Google Scholar 

  • Mokhtar, N. M., Lau, W. J., Ng, B. C., Ismail, A. F., & Veerasamy, D. (2015). Preparation and characterization of PVDF membranes incorporated with different additives for dyeing solution treatment using membrane distillation. Desalination and Water Treatment, 56(8), 1999–2012.

    Article  CAS  Google Scholar 

  • Nasib, A. M., Hatim, I., Jullok, N., & Alamery, H. R. (2017). Morphological properties of poly(vinylidene fluoride-co-tetrafluoroethylene membrane): effect of solvents and polymer concentrations. Malaysian Journal of Analytical Sciences, 21(2), 356–364.

    Article  Google Scholar 

  • Nawi, N. I. M., Bilad, M. R., & Nordin, N. A. H. M. (2018). Effect of dope solution temperature on the membrane structure and membrane distillation performance. IOP Conf. Series: Earth and Environmental Science, 140, 0–7.

  • Ngang, H. P., Ooi, B. S., Ahmad, A. L., & Lai, S. O. (2012). Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chemical Engineering Journal, 197, 359–367.

    Article  CAS  Google Scholar 

  • Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41–49.

    Article  CAS  Google Scholar 

  • Parvez, K., Li, R., Puniredd, S. R., Hernandez, Y., Hinkel, F., Wang, S., et al. (2013). Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano, 7(4), 3598–3606.

    Article  CAS  Google Scholar 

  • Rashad, M., Shaalan, N. M., & Abd-elnaiem, A. M. (2016). Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique. Desalination and Water Treatment, 75, 26267–26273.

    Article  Google Scholar 

  • Safarpour, M., Vatanpour, V., Khataee, A., & Esmaeili, M. (2015). Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Separation and Purification Technology, 154, 96–107.

    Article  CAS  Google Scholar 

  • Shon, H. K., Phuntsho, S., Chaudhary, D. S., Vigneswaran, S., & Cho, J. (2013). Nanofiltration for water and wastewater treatment–a mini review. Drinking Water; Engineering and Science, 6, 47–53.

    Article  CAS  Google Scholar 

  • Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Zainol, I., & Masrom, A. K. (2015). A facile one-step method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications. Materials Letters, 161, 665–668.

    Article  CAS  Google Scholar 

  • Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials & Design, 99, 174–181.

    Article  CAS  Google Scholar 

  • Suriani, A. B., Fatiatun, Mohamed, A., Muqoyyanah, Hashim, N., Rosmi, M. S., et al. (2018a). Reduced graphene oxide/platinum hybrid counter electrode assisted by custom-made triple-tail surfactant and zinc oxide/titanium dioxide bilayer nanocomposite photoanode for enhancement of DSSCs photovoltaic performance. Optik-International Journal for Light and Electron Optics, 161, 70–83.

    Article  CAS  Google Scholar 

  • Suriani, A. B., Muqoyyanah, Mohamed, A., Mamat, M. H., Hashim, N., Isa, I. M., et al. (2018b). Improving the photovoltaic performance of DSSCs using a combination of mixed-phase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Optik - International Journal for Light and Electron Optics, 158(2010), 522–534.

    Article  CAS  Google Scholar 

  • Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., et al. (2018c). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723–10743.

    CAS  Google Scholar 

  • Thürmer, M. B., Poletto, P., Marcolin, M., Duarte, J., & Zeni, M. (2012). Effect of non-solvents used in the coagulation bath on morphology of PVDF membranes. Materials Research, 15(6), 884–890.

    Article  Google Scholar 

  • Thuyavan, Y. L., Anantharaman, N., Arthanareeswaran, G., & Ismail, A. F. (2016). Impact of solvents and process conditions on the formation of polyethersulfone membranes and its fouling behavior in lake water filtration. Journal of Chemical Technology & Biotechnology, 91(10), 2568–2581.

    Article  CAS  Google Scholar 

  • Wang, X., Zhang, L., Sun, D., An, Q., & Chen, H. (2008). Effect of coagulation bath temperature on formation mechanism of poly (vinylidene fluoride) membrane. Journal of Applied Polymer Science, 110, 1656–1663.

    Article  CAS  Google Scholar 

  • Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y., & Li, Y. (2012). Novel GO-blended PVDF ultrafiltration membranes. Desalination, 299, 50–54.

    Article  CAS  Google Scholar 

  • Xu, Z., Zhang, J., Shan, M., Li, Y., Li, B., Niu, J., et al. (2014). Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. Journal of Membrane Science, 458, 1–13.

    Article  CAS  Google Scholar 

  • Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene functional graphene. Current Opinion in Colloid & Interface Science, 20(5–6), 329–338.

    Article  CAS  Google Scholar 

  • Yusoff, I. I., Rohani, R., Zaman, N. K., Junaidi, M. U. M., Mohammad, A. W., & Zainal, Z. (2018). Durable pressure filtration membranes based on polyaniline–polyimide P84 blends. Polymer Engineering and Science, 1–11.

  • Zhang, P., Gong, J., Zeng, G., Deng, C., Yang, H., Liu, H., & Huan, S. (2017). Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chemical Engineering Journal, 322, 657–666.

    Article  CAS  Google Scholar 

  • Zhao, Y., Xu, Z., Shan, M., Min, C., Zhou, B., Li, Y., et al. (2013). Effect of graphite oxide and multi-walled carbon nanotubes on the microstructure and performance of PVDF membranes. Separation and Purification Technology, 103, 78–83.

    Article  CAS  Google Scholar 

  • Zhou, M., Tang, J., Cheng, Q., Xu, G., Cui, P., & Qin, L. C. (2013). Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chemical Physics Letters, 572, 61–65.

    Article  CAS  Google Scholar 

  • Zhu, Z., Wang, L., Xu, Y., Li, Q., Jiang, J., & Wang, X. (2017). Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection. Journal of Colloid and Interface Science, 504, 429–439.

    Article  CAS  Google Scholar 

  • Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., & Zangeneh, H. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. Journal of Membrane Science, 453, 292–301.

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to express their appreciation to the TWAS-COMSTECH Joint Research Grant (grant no. 2017-0001-102-11) and Fundamental Research Grant Scheme (grant no. 2015-0154-102-02) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Suriani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriani, A.B., Muqoyyanah, Mohamed, A. et al. Incorporation of Electrochemically Exfoliated Graphene Oxide and TiO2 into Polyvinylidene Fluoride-Based Nanofiltration Membrane for Dye Rejection. Water Air Soil Pollut 230, 176 (2019). https://doi.org/10.1007/s11270-019-4222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4222-x

Keywords

Navigation