Skip to main content
Log in

MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

MIL-100(Fe), an environmental-friendly and water-stable metal–organic framework (MOF), has caught increasing research and application attention in the recent decade. Thanks to its mesoporous structure and eximious surface area, MIL-100(Fe) has been utilized as precursors for synthesizing various porous materials under high thermolysis temperature, which makes the derivatives of MIL-100(Fe) pretty promising candidates for the decontamination of wastewater. Herein, this review systematically summarizes the versatile synthetic methods and conditions for optimizing the properties of MIL-100(Fe) and its derivatives. Then, diverse environmental applications (i.e., adsorption, photocatalysis, and Fenton-like reaction) of MIL-100(Fe) and its derivatives and the corresponding removal mechanisms are detailed in the discussion. Finally, existing knowledge gaps related to fabrications and applications are discussed to close and promote the future development of MIL-100(Fe) and its derivatives toward environmental applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbasi Z, Shamsaei E, Leong SK, Ladewig B, Zhang X, Wang H (2016) Effect of carbonization temperature on adsorption property of ZIF-8 derived nanoporous carbon for water treatment. Microporous Mesoporous Mater 236:28–37

    CAS  Google Scholar 

  • Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 7:70–71

    Google Scholar 

  • Ahmed I, Jeon J, Khan NA, Jhung SH (2013) Synthesis of a metal–organic framework, iron-benezenetricarboxylate, from dry gels in the absence of acid and salt. Crystl Growth Des 12:5878–5881

    Google Scholar 

  • Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    CAS  Google Scholar 

  • Bezverkhyy I, Weber G, Bellat J-P (2016) Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: effect of temperature and pH. Microporous Mesoporous Mater 219:117–124

    CAS  Google Scholar 

  • Brillas E, Sires I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    CAS  Google Scholar 

  • Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal-organic frameworks. Chem Rev 114:10575–10612

    CAS  Google Scholar 

  • Cai J, Wang X, Zhou Y, Jiang L, Wang C (2016) Selective adsorption of arsenate and the reversible structure transformation of the mesoporous metal-organic framework MIL-100(Fe). Phys Chem Chem Phys 18:10864–10867

    CAS  Google Scholar 

  • Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19

    CAS  Google Scholar 

  • Chen G, Leng X, Luo J, You L, Qu C, Dong X, Huang H, Yin X, Ni J (2019) In vitro toxicity study of a porous iron(III) metal-organic framework. Molecules 24:1211

    Google Scholar 

  • Chen YZ, Zhang R, Jiao L, Jiang HL (2018) Metal–organic framework-derived porous materials for catalysis. Coord Chem Rev 362:1–23

    CAS  Google Scholar 

  • Cheng M, Lai C, Liu Y, Zeng G, Huang D, Zhang C, Qin L, Hu L, Zhou C, Xiong W (2018) Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev 368:80–92

    CAS  Google Scholar 

  • Cui L, Zhao D, Yang Y, Wang Y, Zhang X (2017) Synthesis of highly efficient α-Fe2O3 catalysts for CO oxidation derived from MIL-100(Fe). J Solid State Chem 247:168–172

    CAS  Google Scholar 

  • Duan S, Li J, Liu X, Wang Y, Zeng S, Shao D, Hayat T (2016) HF-free synthesis of nanoscale metal–organic framework NMIL-100(Fe) as an efficient dye adsorbent. ACS Sustain Chem Eng 4:3368–3378

    CAS  Google Scholar 

  • Esrafili L, Azhdari Tehrani A, Morsali A (2017) Ultrasonic assisted synthesis of two urea functionalized metal organic frameworks for phenol sensing: a comparative study. Ultrason Sonochem 39:307–312

    CAS  Google Scholar 

  • Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350

    CAS  Google Scholar 

  • Fan X, Wang W, Li W, Zhou J, Wang B, Zheng J, Li X (2014) Highly porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl Mater Interfaces 6:14994–14999

    CAS  Google Scholar 

  • Fang Y, Wen J, Zeng G, Jia F, Zhang S, Peng Z, Zhang H (2018a) Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI). Chem Eng J 337:532–540

    CAS  Google Scholar 

  • Fang Y, Wen J, Zeng G, Shen M, Cao W, Gong J, Zhang Y (2018b) From nZVI to SNCs: development of a better material for pollutant removal in water. Environ Sci Pollut R 25:6175–6195

    CAS  Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    CAS  Google Scholar 

  • Gao C, Chen S, Quan X, Yu H, Zhang Y (2017) Enhanced Fenton-like catalysis by iron-based metal organic frameworks for degradation of organic pollutants. J Catal 356:125–132

    CAS  Google Scholar 

  • Gao G, Xing Y, Liu T, Wang J, Hou X (2019) UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: the application of experimental and molecular simulation method. Microchem J 146:126–133

    CAS  Google Scholar 

  • Gao J, He M, Lee ZY, Cao W, Xiong WW, Li Y, Ganguly R, Wu T, Zhang Q (2013a) A surfactant-thermal method to prepare four new three-dimensional heterometal-organic frameworks. Dalton T 42:11367–11370

    CAS  Google Scholar 

  • Gao J, Ye K, He M, Xiong W-W, Cao W, Lee ZY, Wang Y, Wu T, Huo F, Liu X, Zhang Q (2013b) Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media. J Solid State Chem 206:27–31

    CAS  Google Scholar 

  • Gao J, Ye K, Yang L, Xiong WW, Ye L, Wang Y, Zhang Q (2014) Growing crystalline zinc-1,3,5-benzenetricarboxylate metal-organic frameworks in different surfactants. Inorg Chem 53:691–693

    CAS  Google Scholar 

  • García Márquez A, Demessence A, Platero-Prats AE, Heurtaux D, Horcajada P, Serre C, Chang J-S, Férey G, de la Peña-O’Shea VA, Boissière C, Grosso D, Sanchez C (2012) Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem 2012:5165–5174

    Google Scholar 

  • Guan X, Sun Y, Qin H, Li J, Lo IM, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014). Water Res 75:224–248

    CAS  Google Scholar 

  • Guo Y, Tang J, Salunkhe RR, Alothman ZA, Hossain MSA, Malgras V, Yamauchi Y (2017) Effect of various carbonization temperatures on ZIF-67 derived nanoporous carbons. Bull Chem Soc Jpn 90:939–942

    CAS  Google Scholar 

  • Han L, Qi H, Zhang D, Ye G, Zhou W, Hou C, Xu W, Sun Y (2017) Facile and green synthesis of MIL-100(Fe) with high-yield and its catalytic performance. New J Chem 41

  • Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Mater 209-210:151–157

    CAS  Google Scholar 

  • He X, Fang H, Gosztola DJ, Jiang Z, Jena P, Wang WN (2019) Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites. ACS Appl Mater Interfaces 11:12516–12524

    CAS  Google Scholar 

  • Hei S, Jin Y, Zhang F (2014) Fabrication of γ-Fe2O3 nanoparticles by solid-state thermolysis of a metal-organic framework, MIL-100(Fe), for heavy metal ions removal. Aust J Chem 2014:1–6

    Google Scholar 

  • Himeur F, Stein I, Wragg DS, Slawin AMZ, Lightfoot P, Morris RE (2010) The ionothermal synthesis of metal organic frameworks, Ln(C9O6H3)((CH3NH)2CO)2, using deep eutectic solvents. Solid State Sci 12:418–421

    CAS  Google Scholar 

  • Hoa ML, Lu M, Zhang Y (2006) Preparation of porous materials with ordered hole structure. Adv Colloid Interf Sci 121:9–23

    CAS  Google Scholar 

  • Horcajada P, Surble S, Serre C, Hong DY, Seo YK, Chang JS, Greneche JM, Margiolaki I, Ferey G (2007) Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun:2820–2822

  • Hu L, Chen L, Fang Y, Wang A, Chen C, Yan Z (2018) Facile synthesis of zeolitic imidazolate framework-8 (ZIF-8) by forming imidazole-based deep eutectic solvent. Microporous Mesoporous Mater 268:207–215

    CAS  Google Scholar 

  • Huo S-H, Yan X-P (2012) Metal–organic framework MIL-100(Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem 22:7449

    CAS  Google Scholar 

  • Ihsanullah, Abbas, A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M., Atieh, M.A., 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157, 141-161.

    CAS  Google Scholar 

  • Isaeva VI, Kustov LM (2016) Microwave activation as an alternative production of metal-organic frameworks. Russ Chem Bull 65:2103–2114

    CAS  Google Scholar 

  • Jeremias F, Henninger SK, Janiak C (2016) Ambient pressure synthesis of MIL-100(Fe) MOF from homogeneous solution using a redox pathway. Dalton T 45:8637–8644

    CAS  Google Scholar 

  • Jeremias F, Khutia A, Henninger SK, Janiak C (2012) MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application. J Mater Chem 22:10148–10151

    CAS  Google Scholar 

  • Jia Y, Jin Q, Li Y, Sun Y, Huo J, Zhao X (2015) Investigation of the adsorption behaviour of different types of dyes on MIL-100(Fe) and their removal from natural water. Anal Methods 7:1463–1470

    CAS  Google Scholar 

  • Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L (2018) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68

    Google Scholar 

  • Khan NA, Jhung SH (2015) Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev 285:11–23

    CAS  Google Scholar 

  • Kobielska PA, Howarth AJ, Farha OK, Nayak O (2018) Metal–organic frameworks for heavy metal removal from water. Coord Chem Rev 358:92–107

    CAS  Google Scholar 

  • Lai Y, Chen W, Zhang Z, Qu Y, Gan Y, Li J (2016) Fe/Fe3C decorated 3-D porous nitrogen-doped graphene as a cathode material for rechargeable Li–O2 batteries. Electrochim Acta 191:733–742

    CAS  Google Scholar 

  • Li G-C, Zhao W (2017) Zeolitic imidazolate frameworks derived Co nanoparticles anchored on graphene as superior anode material for lithium ion batteries. J Alloys Compd 716:156–161

    CAS  Google Scholar 

  • Li P, Cheng F-F, Xiong W-W, Zhang Q (2018) New synthetic strategies to prepare metal–organic frameworks. Inorg Chem Front 5:2693–2708

    CAS  Google Scholar 

  • Liang P, Zhang C, Duan X, Sun H, Liu S, Tade MO, Wang S (2017a) An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ Sci Nano 4:315–324

    CAS  Google Scholar 

  • Liang P, Zhang C, Duan X, Sun H, Liu S, Tade MO, Wang S (2017b) N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism. ACS Sustain Chem Eng 5:2693–2701

    CAS  Google Scholar 

  • Liang R, Chen R, Jing F, Qin N, Wu L (2015a) Multifunctional polyoxometalates encapsulated in MIL-100(Fe): highly efficient photocatalysts for selective transformation under visible light. Dalton T 44:18227–18236

    CAS  Google Scholar 

  • Liang R, Jing F, Shen L, Qin N, Wu L (2015b) M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: efficient visible-light photocatalysts for redox reactions in water. Nano Res 8:3237–3249

    CAS  Google Scholar 

  • Lin JB, Lin RB, Cheng XN, Zhang JP, Chen XM (2011) Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chem Commun 47:9185–9187

    CAS  Google Scholar 

  • Liu C, Sun F, Zhou S, Tian Y, Zhu G (2012) Facile synthesis of ZIF-8 nanocrystals in eutectic mixture. CrystEngComm 14:8365

    CAS  Google Scholar 

  • Liu Z-M, Wu S-H, Jia S-Y, Qin F-X, Zhou S-M, Ren H-T, Na P, Liu Y (2014) Novel hematite nanorods and magnetite nanoparticles prepared from MIL-100(Fe) template for the removal of As(V). Mater Lett 132:8–10

    CAS  Google Scholar 

  • Liu Z, Chen J, Wu Y, Li Y, Zhao J, Na P (2018) Synthesis of magnetic orderly mesoporous alpha-Fe2O3 nanocluster derived from MIL-100(Fe) for rapid and efficient arsenic(III,V) removal. J Hazard Mater 343:304–314

    CAS  Google Scholar 

  • Lu HS, Bai L, Xiong WW, Li P, Ding J, Zhang G, Wu T, Zhao Y, Lee JM, Yang Y, Geng B, Zhang Q (2014) Surfactant media to grow new crystalline cobalt 1,3,5-benzenetricarboxylate metal-organic frameworks. Inorg Chem 53:8529–8537

    CAS  Google Scholar 

  • Luo S, Wang J (2018) MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. Environ Sci Pollut R 25:5521–5528

    CAS  Google Scholar 

  • Lv H, Zhao H, Cao T, Qian L, Wang Y, Zhao G (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89

    CAS  Google Scholar 

  • Mahmoodi NM, Abdi J, Oveisi M, Alinia Asli M, Vossoughi M (2018) Metal-organic framework (MIL-100 (Fe)): synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Mater Res Bull 100:357–366

    CAS  Google Scholar 

  • Malgras V, Tang J, Wang J, Kim J, Torad NL, Dutta S, Ariga K, Hossain MSA, Yamauchi Y, Wu KCW (2019) Fabrication of nanoporous carbon materials with hard- and soft-templating approaches: a review. J Nanosci Nanotechnol 19:3673–3685

    CAS  Google Scholar 

  • Mao C, Kong A, Wang Y, Bu X, Feng P (2015) MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles. Nanoscale 7:10817–10822

    CAS  Google Scholar 

  • Marpaung F, Kim M, Khan JH, Konstantinov K, Yamauchi Y, Hossain MSA, Na J, Kim J (2019) Metal-organic framework (MOF)-derived nanoporous carbon materials. Chem Asian J 14:1331–1343

    CAS  Google Scholar 

  • Mohammadifard Z, Saboori R, Mirbagheri NS, Sabbaghi S (2019) Heterogeneous photo-Fenton degradation of formaldehyde using MIL-100(Fe) under visible light irradiation. Environ Pollut 251:783–791

    CAS  Google Scholar 

  • Moradi, S.E., Dadfarnia, S., Haji Shabani, A.M., Emami, S., 2014. Removal of Congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat.t 56, 709-721.

    Google Scholar 

  • Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259

    CAS  Google Scholar 

  • Pichon A, Lazuen-Garay A, James SL (2006) Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 8:211–214

    CAS  Google Scholar 

  • Qing L, Hengyu P, Drew H, Ruiguo C, Guoqi Z, Haifeng L, Kangbing W, Jaephil C, Gang W (2015) Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts. Small 11:1443–1452

    Google Scholar 

  • Qu Q, Gao T, Zheng H, Li X, Liu H, Shen M, Shao J, Zheng H (2015) Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon 92:119–125

    CAS  Google Scholar 

  • Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111

    CAS  Google Scholar 

  • Samal M, Panda J, Biswal BP, Sahu R (2018) Kitchen grinder: a tool for the synthesis of metal–organic frameworks towards size selective dye adsorption. CrystEngComm 20:2486–2490

    CAS  Google Scholar 

  • Sang X, Zhang J, Xiang J, Cui J, Zheng L, Zhang J, Wu Z, Li Z, Mo G, Xu Y, Song J, Liu C, Tan X, Luo T, Zhang B, Han B (2017) Ionic liquid accelerates the crystallization of Zr-based metal-organic frameworks. Nat Commun 8:175

    Google Scholar 

  • Scherer MM, Richter S, Valentine RL, Alvarez PJJ (2000) Chemistry and Microbiology of permeable reactive barriers for in situ groundwater clean up. CRC Crit Rev Microbiol 26:221–264

    CAS  Google Scholar 

  • Seo Y-K, Yoon JW, Lee JS, Lee UH, Hwang YK, Jun C-H, Horcajada P, Serre C, Chang J-S (2012) Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater 157:137–145

    CAS  Google Scholar 

  • Shen K, Chen X, Chen J, Li Y (2016) Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal 6:5887–5903

    CAS  Google Scholar 

  • Shi J, Hei S, Liu H, Fu Y, Zhang F, Zhong Y, Zhu W (2013) Synthesis of MIL-100(Fe) at low temperature and atmospheric pressure. Aust J Chem 2013:1–4

    Google Scholar 

  • Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry. A review Microchem J 135:33–38

    CAS  Google Scholar 

  • Sun Y, Gao K, Zhang Y, Zou H (2017) Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier. Environ Sci Pollut R 24:28142–28151

    CAS  Google Scholar 

  • Tan F, Liu M, Li K, Wang Y, Wang J, Guo X, Zhang G, Song C (2015) Facile synthesis of size-controlled MIL-100(Fe) with excellent adsorption capacity for methylene blue. Chem Eng J 281:360–367

    CAS  Google Scholar 

  • Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P (2014) N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J 258:93–100

    CAS  Google Scholar 

  • Tang J, Wang J (2018a) Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst. Chem Eng J 351:1085–1094

    CAS  Google Scholar 

  • Tang J, Wang J (2018b) Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environ Sci Technol 52:5367–5377

    CAS  Google Scholar 

  • Tannert N, Gökpinar S, Hastürk E, Nießing S, Janiak C (2018) Microwave-assisted dry-gel conversion—a new sustainable route for the rapid synthesis of metal–organic frameworks with solvent re-use. Dalton T 29:9850–9860

    Google Scholar 

  • Thiruvenkatachari R, Vigneswaran S, Naidu R (2008) Permeable reactive barrier for groundwater remediation. J Ind Eng Chem 14:145–156

    CAS  Google Scholar 

  • Thomas-Hillman I, Laybourn A, Dodds C, Kingman SW (2018) Realising the environmental benefits of metal–organic frameworks: recent advances in microwave synthesis. J Mater Chem A 6:11564–11581

    CAS  Google Scholar 

  • Tong M, Liu D, Yang Q, Devautour-Vinot S, Maurin G, Zhong C (2013) Influence of framework metal ions on the dye capture behavior of MIL-100 (Fe, Cr) MOF type solids. J Mater Chem A 1:8534

    CAS  Google Scholar 

  • Torad NL, Hu M, Ishihara S, Sukegawa H, Belik AA, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10:2096–2107

    CAS  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    CAS  Google Scholar 

  • Tsai F-C, Xia Y, Ma N, Shi J-J, Jiang T, Chiang T-C, Zhang Z-C, Tsen W-C (2014) Adsorptive removal of acid orange 7 from aqueous solution with metal–organic framework material, iron (III) trimesate. Desalin Water Treat 57:3218–3226

    Google Scholar 

  • Wang C-C, Du X-D, Li J, Guo X-X, Wang P, Zhang J (2016) Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Environ 193:198–216

    CAS  Google Scholar 

  • Wang D, Gilliland SE 3rd, Yi X, Logan K, Heitger DR, Lucas HR, Wang WN (2018a) Iron mesh-based metal organic framework filter for efficient arsenic removal. Environ Sci Technol 52:4275–4284

    CAS  Google Scholar 

  • Wang D, Jia F, Wang H, Chen F, Fang Y, Dong W, Zeng G, Li X, Yang Q, Yuan X (2018b) Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interface Sci 519:273–284

    CAS  Google Scholar 

  • Wang C, Luan J, Wu C (2019) Metal-organic frameworks for aquatic arsenic removal. Water Res 158:370–382

    CAS  Google Scholar 

  • Wang Y, Xu Y, Ma H, Xu R, Liu H, Li D, Tian Z (2014) Synthesis of ZIF-8 in a deep eutectic solvent using cooling-induced crystallisation. Microporous Mesoporous Mater 195:50–59

    CAS  Google Scholar 

  • Wang Z, Yang J, Li Y, Zhuang Q, Gu J (2018c) In situ carbothermal synthesis of nanoscale zero-valent iron functionalized porous carbon from metal-organic frameworks for efficient detoxification of chromium(VI). Eur J Inorg Chem 2018:23–30

    CAS  Google Scholar 

  • Wen J, Fang Y, Zeng G (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal-organic frameworks: a review of studies from the last decade. Chemosphere 201:627–643

    CAS  Google Scholar 

  • Wezendonk TA, Santos VP, Nasalevich MA, Warringa QSE, Dugulan AI, Chojecki A, Koeken ACJ, Ruitenbeek M, Meima G, Islam H-U, Sankar G, Makkee M, Kapteijn F, Gascon J (2016) Elucidating the nature of Fe species during pyrolysis of the Fe-BTC MOF into highly active and stable Fischer–Tropsch catalysts. ACS Catal 6:3236–3247

    CAS  Google Scholar 

  • Wu Z-F, Hu B, Feng M-L, Huang X-Y, Zhao Y-B (2011) Ionothermal synthesis and crystal structure of a magnesium metal-organic framework. Inorg Chem Commun 14:1132–1135

    CAS  Google Scholar 

  • Xiahou Z-J, Wang Y-L, Liu Q-Y, Wei J-J, Chen L-L (2013) Ionothermal synthesis of a 3D heterometallic coordination polymer based on the rod shaped copper(II)–sodium(I)-carboxylate secondary building units with a PCU topology. Inorg Chem Commun 38:62–64

    CAS  Google Scholar 

  • Xiao J-D, Qiu L-G, Jiang X, Zhu Y-J, Ye S, Jiang X (2013) Magnetic porous carbons with high adsorption capacity synthesized by a microwave-enhanced high temperature ionothermal method from a Fe-based metal-organic framework. Carbon 59:372–382

    CAS  Google Scholar 

  • Xie Z-L, Feng M-L, Li J-R, Huang X-Y (2008) Ionothermal synthesis and crystal structure of a 2D metal organic framework: [emim]2[Cd2(btec)Br2] (emim=1-ethyl-3-methylimidazolium, btec=1,2,4,5-benzenetetracarboxylate). Inorg Chem Commun 11:1143–1146

    CAS  Google Scholar 

  • Xie Z, He Z, Feng X, Xu W, Cui X, Zhang J, Yan C, Carreon MA, Liu Z, Wang Y (2016) Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl Mater Interfaces 8:10324–10333

    CAS  Google Scholar 

  • Xing T, Lou Y, Bao Q, Chen J (2014) Surfactant-assisted synthesis of ZIF-8 nanocrystals in aqueous solution via microwave irradiation. CrystEngComm 16:8994–9000

    CAS  Google Scholar 

  • Xiong W, Tong J, Yang Z, Zeng G, Zhou Y, Wang D, Song P, Xu R, Zhang C, Cheng M (2017) Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: performance and mechanism. J Colloid Interface Sci 493:17–23

    CAS  Google Scholar 

  • Xiong W, Zeng G, Yang Z, Zhou Y, Zhang C, Cheng M, Liu Y, Hu L, Wan J, Zhou C (2018) Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci Total Environ 627:235–244

    CAS  Google Scholar 

  • Yan X, Yang Y, Hu X, Zhou M, Komarneni S (2016) Synthesis of mesoporous carbons with narrow pore size distribution from metal-organic framework MIL-100(Fe). Microporous Mesoporous Mater 234:162–165

    CAS  Google Scholar 

  • Yang SJ, Park CR (2012) Preparation of highly moisture-resistant black-colored metal organic frameworks. Adv Mater 24:4010–4013

    CAS  Google Scholar 

  • Yang W, Li X, Li Y, Zhu R, Pang H (2019) Applications of metal-organic-framework-derived carbon materials. Adv Mater 31:e1804740

    Google Scholar 

  • Yang X, Hu X, Wang X, Fu W, He X, Asefa T (2018) Metal-organic framework-derived Fe3C@NC nanohybrids as highly-efficient oxygen reduction electrocatalysts in both acidic and basic media. J Electroanal Chem 823:755–764

    CAS  Google Scholar 

  • Yin D, Huang G, Sun Q, Li Q, Wang X, Yuan D, Wang C, Wang L (2016) RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes. Electrochim Acta 215:410–419

    CAS  Google Scholar 

  • Yu J, Mu C, Yan B, Qin X, Shen C, Xue H, Pang H (2017a) Nanoparticle/MOF composites: preparations and applications. Mater Horiz 4:557–569

    CAS  Google Scholar 

  • Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Ng EP, Chang JS (2017b) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11

    CAS  Google Scholar 

  • Yu X, Toh YS, Zhao J, Nie L, Ye K, Wang Y, Li D, Zhang Q (2015) Surfactant-thermal method to prepare two new cobalt metal-organic frameworks. J Solid State Chem 232:14–18

    CAS  Google Scholar 

  • Yuan B, Wang X, Zhou X, Xiao J, Li Z (2019) Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chem Eng J 355:679–686

    CAS  Google Scholar 

  • Zhang F, Jin Y, Shi J, Zhong Y, Zhu W, El-Shall MS (2015a) Polyoxometalates confined in the mesoporous cages of metal–organic framework MIL-100(Fe): efficient heterogeneous catalysts for esterification and acetalization reactions. Chem Eng J 269:236–244

    CAS  Google Scholar 

  • Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W (2015b) Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190

    CAS  Google Scholar 

  • Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710

    CAS  Google Scholar 

  • Zhang L, Liu H, Shi W, Cheng P (2019) Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coord Chem Rev 388:293–309

    CAS  Google Scholar 

  • Zhang X, Yang Y, Lv X, Wang Y, Cui L (2017) Effects of preparation method on the structure and catalytic activity of Ag–Fe2O3 catalysts derived from MOFs. Catalysts 7:382

    Google Scholar 

  • Zhang X, Yang Y, Song L, Wang Y, He C, Wang Z, Cui L (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89

    CAS  Google Scholar 

  • Zhao J, Liu X, Wu Y, Li D-S, Zhang Q (2019) Surfactants as promising media in the field of metal-organic frameworks. Coord Chem Rev 391:30–43

    CAS  Google Scholar 

  • Zhao J, Wang Y, Dong W, Wu Y, Li D, Liu B, Zhang Q (2015) A new surfactant-introduction strategy for separating the pure single-phase of metal-organic frameworks. Chem Commun 51:9479–9482

    CAS  Google Scholar 

  • Zhao Z, Zhang Z, Li C, Wu H, Wang J, Lu Y (2018) MOF derived iron oxide-based smart plasmonic Ag/Au hollow and porous nanoshells “ultra-microelectrodes” for ultra-sensitive detection of arsenic. J Mater Chem A 6:16164–16169

    CAS  Google Scholar 

  • Zhong G, Liu D, Zhang J (2018) The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. J Mater Chem A 6:1887–1899

    CAS  Google Scholar 

  • Zhou A, Guo R-M, Zhou J, Dou Y, Chen Y, Li J-R (2018) Pd@ZIF-67 derived recyclable Pd-based catalysts with hierarchical pores for high-performance heck reaction. ACS Sustain Chem Eng 6:2103–2111

    CAS  Google Scholar 

  • Zhu BJ, Yu XY, Jia Y, Peng FM, Sun B, Zhang MY, Luo T, Liu JH, Huang XJ (2012) Iron and 1,3,5-benzenetricarboxylic metal–organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. J Phys Chem C 116:8601–8607

    CAS  Google Scholar 

  • Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512

    CAS  Google Scholar 

  • Zhuang J-L, Liu X-Y, Mao H-L, Wang C, Cheng H, Zhang Y, Du X, Zhu S-B, Ren B (2019) Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organic frameworks for supercapacitors. J. Power Sources 429:9–16

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Special Fund for Agro-scientific Research in the Public Interest of China (No. 201503108) and National Natural Science Foundation of China (No. 21771194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haipu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Responsible Editor: Santiago V. Luis

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOC 17869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Yang, Z., Li, H. et al. MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination. Environ Sci Pollut Res 27, 4703–4724 (2020). https://doi.org/10.1007/s11356-019-07318-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07318-w

Keywords

Navigation