Skip to main content
Log in

The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Anthocyanins, being important for both plant functions and human health, were transcriptionally regulated by the MYB–bHLH–WD40 transcription complex. The key MYB regulator for Chinese bayberry (Myrica rubra), MrMYB1, has been characterized in previous studies, while the specific bHLH partner(s) are unknown. In this study, MrbHLH1 and MrbHLH2 were isolated based on their homology to known plant bHLHs involved in anthocyanin biosynthesis regulation. Coordinate expression of MrbHLH1 with MrMYB1 and the anthocyanin biosynthetic genes was observed during fruit development, while MrbHLH2 showed a weaker correlation. Further transient assays in tobacco leaves suggested that MrbHLH1, but not MrbHLH2, was associated with MrMYB1 and triggered significant anthocyanin production. The lack of function of the MrbHLH2 in anthocyanin biosynthesis regulation suggested that different MrbHLH genes within the same phylogenic subfamily have different functions. Overexpression of MrMYB1 and MrbHLH1 in tobacco confirmed the crucial role of MrMYB1MrbHLH1 in anthocyanin biosynthesis and all of the structural genes from NtCHS were up-regulated by the complex. Dual luciferase assays, however, indicated that MrMYB1 and MrbHLH1 selectively activated five of the eight promoters of biosynthetic genes from bayberry (MrCHI, MrF3′H, MrDFR1, MrANS, MrUFGT), although expression levels of all eight biosynthetic genes including MrCHS and downstream genes were coordinately increased during fruit ripening. Moreover, the interaction between MrbHLH1 and MrMYB1 was confirmed by yeast two-hybrid assay. In conclusion, MrbHLH1, but not MrbHLH2, was the essential partner of MrMYB1 during anthocyanin biosynthesis regulation in tobacco and bayberry, however, the biosynthetic genes in these two species responded differently to the MrMYB1–MrbHLH1 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AbA:

Aureobasidin A

ACE:

ACGT-containing element

ANS:

Anthocyanidin synthase

bHLH:

basic Helix-Loop-Helix

BQ:

Biqi

CHI:

Chalcone isomerase

CHS:

Chalcone synthase

CTAB:

Cetyltrimethylammonium bromide

DAFB:

Days after full bloom

DFR:

Dihydroflavonol 4-reductase

F3′5′H:

Flavonoid 3′,5′-hydroxylase

F3H:

Flavanone 3-hydroxylase

F3′H:

Flavonoid 3′-hydroxylase

LDOX:

Leucoanthocyanidin dioxygenase

LUC:

Firefly luciferase

MBW:

MYB–bHLH–WD40

MCS:

Multiple cloning sites

MRE:

MYB recognized element

OMT:

O-methyltransferase

ORF:

Open reading frame

Q-PCR:

Real-time quantitative PCR

RACE:

Rapid amplification of cDNA ends

REN:

Renilla luciferase

SD:

Synthetic dropout

TF:

Transcription factor

UFGT:

UDP glucose: flavonoid 3-O-glucosyltransferase

UTR:

Untranslated region

References

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13(3):99–102

    Article  PubMed  CAS  Google Scholar 

  • An XH, Tian Y, Chen KQ, Wang XF, Hao YJ (2012) The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation. J Plant Physiol 169(7):710–717

    Article  PubMed  CAS  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380

    Article  PubMed  CAS  Google Scholar 

  • Baudry A, Caboche M, Lepiniec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46(5):768–779

    Article  PubMed  CAS  Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63(7):2667–2679

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111(4):1059–1066

    PubMed  CAS  Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8(3):272–279

    Article  PubMed  CAS  Google Scholar 

  • Burr FA, Burr B, Scheffler BE, Blewitt M, Wienand U, Matz EC (1996) The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing. Plant Cell 8(8):1249–1259

    PubMed  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock H-P, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotech 26(11):1301–1308

    Article  CAS  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24(3):1242–1255

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, De Silva N, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161(1):225–239

    Article  PubMed  Google Scholar 

  • Chandler VL, Radicella JP, Robbins TP, Chen J, Turks D (1989) Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell 1(12):1175–1183

    PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49(3):414–427

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21(1):168–183

    Article  PubMed  CAS  Google Scholar 

  • Falginella L, Di Gaspero G, Castellarin S (2012) Expression of flavonoid genes in the red grape berry of ‘Alicante Bouschet’ varies with the histological distribution of anthocyanins and their chemical composition. Planta 236(4):1037–1051

    Article  PubMed  CAS  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Wang Y, Yang S, Xu Y, Chen X (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232(1):245–255

    Article  PubMed  CAS  Google Scholar 

  • Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genom 13(1):19

    Article  CAS  Google Scholar 

  • Gonzali S, Mazzucato A, Perata P (2009) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14(5):237–241

    Article  PubMed  CAS  Google Scholar 

  • Goto-Yamamoto N, Wan GH, Masaki K, Kobayashi S (2002) Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Sci 162(6):867–872

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57(1):761–780

    Article  PubMed  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747

    Article  PubMed  CAS  Google Scholar 

  • Hellens R, Allan AC, Friel E, Bolitho K, Grafton K, Templeton M, Karunairetnam S, Gleave A, Laing W (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1(1):1–14

    Article  Google Scholar 

  • Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3(3):509–523

    Article  PubMed  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62(8):2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7(7):1071–1083

    PubMed  CAS  Google Scholar 

  • Huang YJ, Song S, Allan AC, Liu XF, Yin XR, Xu CJ, Chen KS (2013a) Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell Tiss Org Cult 113(3):491–499

    Article  CAS  Google Scholar 

  • Huang YJ, Yin XR, Zhu CQ, Wang WW, Grierson D, Xu CJ, Chen KS (2013b) Standard addition quantitative real-time PCR (SAQPCR): a novel approach for determination of transgene copy number avoiding pcr efficiency estimation. PLoS ONE 8(1):e53489

    Article  PubMed  CAS  Google Scholar 

  • Hugueney P, Provenzano S, Verriès C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A (2009) A novel cation-dependent O-Methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150(4):2057–2070

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982

    Article  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10(5):236–242

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  CAS  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie T, Espley R, Hellens R, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10(1):50

    Article  PubMed  Google Scholar 

  • Liu XF, Feng C, Zhang MM, Yin XR, Xu CJ, Chen KS (2013) The MrWD40-1 gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation. Plant Mol Biol Rep. doi: 10.1007/s11105-013-0621-0

  • Lo Piero ARl, Consoli A, Puglisi I, Orestano G, Recupero GR, Petrone G (2005) Anthocyaninless cultivars of sweet orange lack to express the UDP-glucose flavonoid 3-O-glucosyl transferase. J Plant Biochem Biotechnol 14(1):9–14

    Article  CAS  Google Scholar 

  • Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol 72(6):607–620

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, Lepiniec L (2000) The TT8 gene encodes a basic Helix-Loop-Helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12(10):1863–1878

    PubMed  CAS  Google Scholar 

  • Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231(4):887–899

    Article  PubMed  CAS  Google Scholar 

  • Palapol Y, Ketsa S, Lin-Wang K, Ferguson IB, Allan AC (2009) A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening. Planta 229(6):1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Porebski S, Bailey L, Baum B (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15(1):8–15

    Article  CAS  Google Scholar 

  • Shan LL, Li X, Wang P, Cai C, Zhang B, Sun CD, Zhang WS, Xu CJ, Ferguson IB, Chen KS (2008) Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227(6):1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Sun CD, Zhang B, Zhang JK, Xu CJ, Wu YL, Li X, Chen KS (2012a) Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J Med Food 15(3):288–298

    Article  PubMed  CAS  Google Scholar 

  • Sun CD, Zheng YX, Chen QJ, Tang XL, Jiang M, Zhang JL, Li X, Chen KS (2012b) Purification and anti-tumour activity of cyanidin-3-O-glucoside from Chinese bayberry fruit. Food Chem 131(4):1287–1294

    Article  CAS  Google Scholar 

  • Sun CD, Huang HZ, Xu CJ, Li X, Chen KS (2013) Biological activities of extracts from Chinese bayberry (Myrica rubra Sieb. et Zucc.): a review. Plant Foods Hum Nutr 68(2):97–106

    Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142(3):1216–1232

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Wei YZ, Hu FC, Hu GB, Li XJ, Huang XM, Wang HC (2011) Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi Chinensis Sonn. PLoS ONE 6(4):e19455

    Article  PubMed  CAS  Google Scholar 

  • Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35(11):1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Yin XR, Chen KS, Allan AC, Wu RM, Zhang B, Lallu N, Ferguson IB (2008) Ethylene-induced modulation of genes associated with the ethylene signalling pathway in ripening kiwifruit. J Exp Bot 59(8):2097–2108

    Article  PubMed  CAS  Google Scholar 

  • Yin XR, Allan AC, Chen KS, Ferguson IB (2010) Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol 153(3):1280–1292

    Article  PubMed  CAS  Google Scholar 

  • Zhang WS, Li X, Zheng JT, Wang GY, Sun CD, Ferguson IB, Chen KS (2008) Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. Eur Food Res Technol 227(4):1091–1097

    Article  CAS  Google Scholar 

  • Zhang B, Kang M, Xie Q, Xu B, Sun CD, Chen KS, Wu YL (2010) Anthocyanins from Chinese bayberry extract protect β cells from oxidative stress-mediated injury via HO-1 upregulation. J Agric Food Chem 59(2):537–545

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Don Grierson from University of Nottingham (UK) for his kind discussion, suggestion, and efforts in language editing. This research was supported by the National High Technology Research and Development Program of China [2013AA102606], the National Natural Science Foundation of China [31071781], the Program of International Science and Technology Cooperation [2011DFB31580], the Special Scientific Research Fund of Agricultural Public Welfare Profession of China [201203089].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jie Xu.

Additional information

X.-F. Liu and X.-R. Yin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, XF., Yin, XR., Allan, A.C. et al. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell Tiss Organ Cult 115, 285–298 (2013). https://doi.org/10.1007/s11240-013-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0361-8

Keywords

Navigation