Skip to main content
Log in

Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

MrMYB1, an R2R3 MYB transcription factor (TF) gene associated with anthocyanin biosynthesis in Chinese bayberry (Myrica rubra Sieb. and Zucc.), was introduced into Arabidopsis and tobacco (Nicotiana tabacum) under the control of the CaMV 35S promoter. Overexpression of MrMYB1 induced anthocyanin accumulation in all tissues of Arabidopsis as well as in petals, ovaries and young seeds of tobacco, but not in tobacco leaves. The anthocyanin biosynthetic pathway, including chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS), and the basic helix-loop-helix (bHLH) transcriptional partner TRANSPARENT TESTA8 (TT8), were up-regulated significantly in MrMYB1-overexpressing Arabidopsis. In MrMYB1-overexpressing tobacco petals, ovaries and young seeds, anthocyanin biosynthetic genes and bHLH partners NtAn1a and NtAn1b, were up-regulated. In contrast, high expression of MrMYB1 in transgenic tobacco leaves did not induce the expression of anthocyanin biosynthesis. Unlike in petals and ovaries, the foliar transcript level of NtAn1a and NtAn1b was extremely low and not stimulated by MrMYB1 transformation. These results show that higher expression of an endogenous bHLH partner, either intrinsically or stimulated by exogenous gene transformation, is required for anthocyanin production in plant tissues, and the different abundance in endogenous bHLH transcript accounts for differential accumulation of anthocyanin in Arabidopsis and tobacco leaves. These findings demonstrate that higher levels of expression of an endogenous bHLH partner, either intrinsically or following genetic transformation, are required for anthocyanin production in plant tissues. Moreover, differences in levels of endogenous bHLH transcripts account for observed differential accumulation of anthocyanin in leaves of Arabidopsis and tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TF:

Transcription factor

CaMV:

Cauliflower mosaic virus

CHS:

Chalcone synthase

DFR:

Dihydroflavonol 4-reductase

ANS:

Anthocyanidin synthase

bHLH:

Basic helix-loop-helix

TT8:

TRANSPARENT TESTA8

PAP1:

Production of Anthocyanin Pigment 1

ANT1:

Anthocyanin1

CDS:

Coding sequence

RNR2:

Ribonucleotide reductase R2

NPT II:

Neomycin phosphotransferase II

HPLC:

High-performance liquid chromatography

CTAB:

Cetyltrimethylammonium bromide

qPCR:

Real-time quantitative PCR

CHI:

Chalcone isomerase

UFGT:

UDP-glucose: flavonoid 3-O-glucosyltransferase

References

  • Aharoni A, Ric De Vos CH, Wein M, Sun ZK, Greco R, Kroon A, Mol JNM, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332

    Article  PubMed  CAS  Google Scholar 

  • Allan AC, Hellens RP, Laing WA (2008) MYB transcription factors that colour our fruit. Trends Plant Sci 13:99–102

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L (2011) Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from ancestors and are functionally active. Planta 234:363–375

    Article  PubMed  CAS  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Baudry A, Caboche M, Lepiniec L (2006) TT8 control its own expression in feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394

    PubMed  CAS  Google Scholar 

  • Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGWM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnol 26:1301–1308

    Article  CAS  Google Scholar 

  • Chabouté M-E, Combettes B, Clément B, Gigot C, Philipps G (1998) Molecular characterization of tobacco ribonucleotide reductase RNR1 and RNR2 cDNAs and cell cycle-regulated expression in synchronized plant cells. Plant Mol Biol 38:797–806

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cutanda-Perez M-C, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson RP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Bovy A, Bava C, Jaeger SR, Tomes S, Norling C, Crawford J, Rowan D, McGhie TK, Brendolise C, Putterill J, Schouten HJ, Hellens RP, Allan AC (2012) Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnol J. doi:10.1111/pbi.12017

    PubMed  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  PubMed  CAS  Google Scholar 

  • Feng SQ, Wang YL, Yang S, Xu YT, Chen XS (2010) Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10. Planta 232:245–255

    Article  PubMed  CAS  Google Scholar 

  • Feng C, Chen M, Xu CJ, Bai L, Yin XR, Li X, Allan AC, Ferguson IB, Chen KS (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics 13:19

    Article  PubMed  CAS  Google Scholar 

  • Gao JJ, Shen XF, Zhang Z, Peng RH, Xiong AS, Xu J, Zhu B, Zheng JL, Yao QH (2011) The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis. Plant Cell Tiss Organ Cult 106:235–242

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    Article  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Holton T, Cornish E (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang YJ, Yin XR, Zhu CQ, Wang WW, Grierson D, Xu CJ, Chen KS (2013) Standard addition quantitative real-time PCR (SAQPCR): a novel approach for determination of transgene copy number avoiding pcr efficiency estimation. PLOS ONE 8:e53489

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Laitinen RAE, Ainasoja M, Broholm SK, Teeri TH, Elomaa P (2008) Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. J Exp Bot 59:3691–3703

    Article  PubMed  CAS  Google Scholar 

  • Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50

    Article  PubMed  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Ry Wagner D (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • Mooney M, Desnos T, Harrison K, Jones J, Carpenter R, Coen E (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the delila gene of Antirrhinum. Plant J 7:333–339

    Article  CAS  Google Scholar 

  • Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887–899

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Kim JB, Cho KJ, Cheon CI, Sung MK, Choung MG, Roh KH (2008) Arabidopsis R2R3-MYB transcription factor AtMYB60 functions as a transcriptional repressor of anthocyanin biosynthesis in lettuce (Lactuca sativa). Plant Cell Rep 27:985–994

    Article  PubMed  CAS  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B, Yuan L (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    PubMed  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, van der Woude K, NM Mol J, Koes R (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes. Plant J 13:475–488

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchio F, Verweij W, Kroon A, Spelt C, Mol J, Koes R (2006) PH4 of petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with Basic-Helix-Loop-Helix transcription factors of the anthocyanin pathway. Plant Cell 18:1274–1291

    Article  PubMed  CAS  Google Scholar 

  • Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed  CAS  Google Scholar 

  • Shan LL, Li X, Wang P, Cai C, Zhang B, Sun CD, Zhang WS, Xu CJ, Ferguson IB, Chen KS (2008) Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227:1243–1254

    Article  PubMed  CAS  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) Anthocyanin1of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1632

    PubMed  CAS  Google Scholar 

  • Sun CD, Zheng YX, Tang XL, Jiang M, Zhang JK, Li X, Chen KS (2012a) Purification and anti-tumor activity of cyanidin-3-O-glucoside from Chinese bayberry fruit. Food Chem 13:1287–1294

    Article  Google Scholar 

  • Sun CD, Zhang B, Zhang JK, Xu CJ, Wu YL, Li X, Chen KS (2012b) Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic β cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J Med Food 15:288–298

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The Transparent Testa Glabra1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1350

    PubMed  CAS  Google Scholar 

  • Wang WW, Zhu CQ, Liu XH, Chen KS, Xu CJ (2011) Techniques for rapid preparation of tomato leaf DNA and its application in real-time quantitative PCR-based transgene detection. Hereditas (Beijing) 33:1017–1022

    Article  Google Scholar 

  • Yoshida K, Kume N, Nakaya Y, Yamagami A, Nakano T, Sakuta M (2010) Comparative analysis of the triplicate proanthocyanidin regulators in Lotus japonicus. Plant Cell Physiol 51:912–922

    Article  PubMed  CAS  Google Scholar 

  • Zhang WS, Li X, Zheng JT, Wang GY, Sun CD, Ferguson IB, Chen KS (2008) Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. Eur Food Res Technol 227:1091–1097

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Research and Development Program of China [2013AA102606], the National Natural Science Foundation of China [31071781], the Program of International Science and Technology Cooperation [2011DFB31580], the Special Scientific Research Fund of Agricultural Public Welfare Profession of China (201203089), the Science and Technology Project of Zhejiang Province (2009C14023), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20090101110099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YJ., Song, S., Allan, A.C. et al. Differential activation of anthocyanin biosynthesis in Arabidopsis and tobacco over-expressing an R2R3 MYB from Chinese bayberry. Plant Cell Tiss Organ Cult 113, 491–499 (2013). https://doi.org/10.1007/s11240-013-0291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0291-5

Keywords

Navigation