Skip to main content
Log in

Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The ripening fruit of two loquat (Eriobotrya japonica Lindl.) cultivars with different levels of lignin accumulation provide an intriguing example of lignification in flesh tissue. Increase in firmness as a result of lignification in ripening red-fleshed Luoyangqing (LYQ) fruit was confirmed, whereas white-fleshed Baisha (BS) fruit softened without lignification. Six cDNAs associated with the lignification pathway, i.e. EjPAL1, EjPAL2 (phenylalanine ammonia lyase, PAL, EC 4.3.1.5), Ej4CL (4-coumarate: coenzyme A ligase, 4CL, EC 6.2.1.12), EjCAD1, EjCAD2 (cinnamyl alcohol dehydrogenase, CAD, EC 1.1.1.195) and EjPOD (peroxidase, POD), were cloned from flesh tissue of LYQ fruit. Expression profiles of the six corresponding genes differed greatly in different tissues, and during fruit development and ripening in both LYQ and BS cultivars. Associated activities of PAL, 4CL, CAD, and POD enzymes were also measured. CAD and POD enzyme activities and the expression of EjCAD1 and EjPOD genes were most closely associated temporally with lignification of loquat flesh tissue. Levels of EjCAD1 transcripts were particularly aligned with changes in lignification during ripening as modified either by ethylene treatment or low temperature conditioning. The two PAL genes showed different expression patterns during fruit development, with EjPAL1 strongly expressed in mature fruit and EjPAL2 only expressed in early stages of development. In addition, EjCAD1 expression was stimulated by low temperature and may contribute to low temperature injury in the fruit. Our integrated data on lignin, monolignol precursors, and associated enzymes and genes, provide a consistent model of fruit lignification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LYQ:

cv. Luoyangqing

BS:

cv. Baisha

PAL:

Phenylalanine ammonia lyase

4CL:

4-Coumarate: coenzyme A ligase

CAD:

Cinnamyl alcohol dehydrogenase

POD:

Peroxidase

LTC:

Low temperature conditioning

WAA:

Weeks after anthesis

Q-PCR:

Real-time quantitative PCR

Ct:

Cycle threshold

References

  • Andersen RA, Vaughn TH, Kasperbauer MJ (1980) Coniferyl and sinapyl alcohols: major phenylpropanoids released in hot water extracts of tobacco and alfalfa. J Agric Food Chem 28:427–432

    Article  CAS  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  PubMed  CAS  Google Scholar 

  • Bate NJ, Orr J, Ni W, Meromi A, Nadler-Hassar T, Doerner PW, Dixon RA, Lamb CJ, Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci USA 91:7608–7612

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Bernard-Vailhé MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the impact on lignin composition and digestibility. Plant Mol Biol 39:437–447

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, Van Montagu M, Inzé D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar (Populus tremula x P. alba). Plant Physiol 112:1479–1490

    PubMed  CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol 38:305–350

    Article  CAS  Google Scholar 

  • Blanco-Portales R, Medina-Escobar N, López-Ráez JA, González-Reyes JA, Villalba JM, Moyano E, Caballero JL, Muñoz-Blanco J (2002) Cloning, expression and immunolocalization pattern of a cinnamyl alcohol dehydrogenase gene from strawberry (Fragaria x ananassa cv. Chandler). J Exp Bot 53:1723–1734

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Ann Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Boudet AM, Kajita S, Grima-Pettenati J, Goffner D (2003) Lignins and lignocellulosics: a better control of synthesis for new and improved uses. Trends Plant Sci 8:576–581

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cai C, Chen KS, Xu WP, Zhang WS, Li X, Ferguson IB (2006a) Effect of 1-MCP on postharvest quality of loquat fruit. Postharvest Biol Technol 40:155–162

    Article  CAS  Google Scholar 

  • Cai C, Li X, Chen KS (2006b) Acetylsalicylic acid alleviates chilling injury of postharvest loquat (Eriobotrya japonica Lindl.) fruit. Eur Food Res Technol 223:533–539

    Article  CAS  Google Scholar 

  • Cai C, Xu CJ, Shan LL, Li X, Zhou CH, Zhang WS, Ferguson IB, Chen KS (2006c) Low temperature conditioning reduces postharvest chilling injury in loquat fruit. Postharvest Biol Technol 41:252–259

    Article  CAS  Google Scholar 

  • Cai C, Xu CJ, Li X, Ferguson IB, Chen KS (2006d) Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol Technol 40:163–169

    Article  CAS  Google Scholar 

  • Costa MA, Collin RE, Anterola AM, Cochrane FC, Davin LB, Lewis NG (2003) An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochemistry 64:1097–1112

    Article  PubMed  CAS  Google Scholar 

  • Damiani I, Morreel K, Danoun S, Goeminne G, Yahiaoui N, Marque C, Kopka J, Messens E, Goffner D, Boerjan W, Boudet AM, Rochange S (2005) Metabolite profiling reveals a role for atypical cinnamyl alcohol dehydrogenase CAD1 in the synthesis of coniferyl alcohol in tobacco xylem. Plant Mol Biol 59:753–769

    Article  PubMed  CAS  Google Scholar 

  • Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet AM, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52:263–285

    Article  PubMed  CAS  Google Scholar 

  • Ding CK, Chaochin K, Ueda Y, Imahori Y, Wang CY (2002) Modified atmosphere packaging maintains postharvest quality of loquat fruit. Postharvest Biol Technol 24:341–348

    Article  CAS  Google Scholar 

  • Dyckmans J, Flessa H, Brinkmann K, Mai C, Polle A (2002) Carbon and nitrogen dynamics in acid detergent fibre lignins of beech (Fagus sylvatica L.) during the growth phase. Plant Cell Environ 25:469–478

    Article  CAS  Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci USA 87:9057–9061

    Article  PubMed  CAS  Google Scholar 

  • Eudes A, Pollet B, Sibout R, Do CT, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annu Rev Plant Physiol 37:165–186

    Article  CAS  Google Scholar 

  • Gavnholt B, Larsen K (2002) Molecular biology of plant laccases in relation to lignin formation. Physiol Plant 116:273–280

    Article  CAS  Google Scholar 

  • Gazarian IG, Lagrimini LM, Ashby GA, Thorneley RNF (1996) Mechanism of indole-3-acetic oxidation by plant peroxidases: anaerobic stopped-flow spectrophotometric studies on horseradish tobacco peroxidases. Biochem J 313:841–847

    Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1)—a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier M-T, Schuch W (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  CAS  Google Scholar 

  • Hibino T, Takabe K, Kawazu T, Shibata D, Higuchi T (1995) Increase of cinnamaldehyde groups in lignin of transgenic tobacco plants carrying an antisense gene for cinnamyl alcohol dehydrogenase. Biosci Biotech Bioch 59:929–931

    Article  CAS  Google Scholar 

  • Kajita S, Hishiyama S, Tomimura Y, Katayama Y, Omori S (1997) Structural characterization of modified lignin in transgenic tobacco plants in which the activity of 4-coumarate: coenzyme A ligase is depressed. Plant Physiol 114:871–879

    PubMed  CAS  Google Scholar 

  • Kajita S, Katayama Y, Omori S (1996) Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiol 37:957–965

    PubMed  CAS  Google Scholar 

  • Ketsa S, Atantee S (1998) Phenolics, lignin, peroxidase activity and increased firmness of damaged pericarp of mangosteen fruit after impact. Postharvest Biol Technol 14:117–124

    Article  CAS  Google Scholar 

  • Korth KL, Blount JW, Chen F, Rasmussen S, Lamb C, Dixon RA (2001) Changes in phenylpropanoid metabolites associated with homology-dependent silencing of phenylalanine ammonia-lyase and its somatic reversion in tobacco. Physiol Plant 11:137–143

    Article  Google Scholar 

  • Lagrimini LM (1991) Wound-induced deposition of polyphenols in transgenic plant over-expressing peroxidase. Plant Physiol 96:577–583

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Meyer K, Chapple C, Douglas CJ (1997) Antisense suppression of 4-coumarate: coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition. Plant Cell 9:1985–1998

    Article  PubMed  CAS  Google Scholar 

  • MacKay JJ, O’Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci USA 94:8255–8260

    Article  PubMed  CAS  Google Scholar 

  • Mansouri IE, Mercado JA, Santiago-Doménech N, Pliego-Alfaro F, Valpuesta V, Quesada MA (1999) Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol Plant 106:355–362

    Article  Google Scholar 

  • Marlett JA (2000) Changes in content and composition of dietary fiber in yellow onions and red delicious apples during commercial storage. J AOAC Int 83:992–996

    PubMed  CAS  Google Scholar 

  • Martin-Cabrejas MA, Waldron KW, Selvendran RR, Parker ML, Moates GK (1994) Ripening-related changes in the cell walls of Spanish pear (Pyrus communis). Physiol Plant 91:671–679

    Article  CAS  Google Scholar 

  • Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7:737–742

    Article  PubMed  CAS  Google Scholar 

  • Schnabelrauch LS, Kieliszewski M, Upham BL, Alizedeh H, Lamport DTA (1996) Isolation of pI 4.6 extensin peroxidase from tomato cell suspension cultures and identification of Val-Tyr-Lys as putative intermolecular cross-link site. Plant J 9:477–489

    Article  PubMed  CAS  Google Scholar 

  • Sewalt VJH, Ni W, Blount JW, Jung HG, Masoud SA, Howles PA, Lamb C, Dixon RA (1997) Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol 115:41–50

    PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) Cinnamyl alcohol dehydrogenase-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Pollet B, Goujon T, Mila I, Granier F, Séguin A, Lapierre C, Jouanin L (2003) Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis. Isolation and characterization of the corresponding mutants. Plant Physiol 132:848–860

    Article  PubMed  CAS  Google Scholar 

  • Soltani BM, Ehlting J, Hamberger B, Douglas CJ (2006) Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. Planta 224:1226–1238

    Article  PubMed  CAS  Google Scholar 

  • Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J (1997) Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201:311–318

    Article  CAS  PubMed  Google Scholar 

  • Voo KS, Whetten RW, O’Malley DM, Sederoff RR (1995) 4-Coumarate:coenzyme A ligase from loblolly pine xylem (isolation, characterization, and complementary DNA cloning). Plant Physiol 108:85–97

    Article  PubMed  CAS  Google Scholar 

  • Welinder KG, Justesen AF, Kjærsgard IVH, Jensen RB, Rasmussen SK, Jespersen HM, Duroux L (2002) Structural diversity and transcription of class III peroxidases from Arabidopsis thaliana. Eur J Biochem 269:6063–6081

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Marque C, Myton KE, Negrel J, Boudet AM (1998) Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants. Planta 204:8–15

    Article  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Zhang B, Chen KS, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson IB (2006) Differential expression within the LOX gene family in ripening kiwifruit. J Exp Bot 57:3825–3836

    Article  PubMed  CAS  Google Scholar 

  • Zheng YH, Li SY, Xi YF (2000) Changes of cell wall substances in relation to flesh woodiness in cold-stored loquat fruits. Acta Phytophysiol Sin 26:306–310 (in Chinese)

    CAS  Google Scholar 

  • Zhou CH, Xu CJ, Sun CD, Li X, Chen KS (2007) Carotenoids in white- and red-fleshed loquat fruits. J Agric Food Chem 55:7822–7830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Project of National Natural Science Foundation of China (30600423), National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science and Technology of China (2006BAD22B05), the Project of Natural Science Foundation of Zhejiang Province (Z306010), the Project of the Science and Technology Department of Zhejiang Province, China (2007C12069) and the 111 project (B06014). It is also part of a collaborative program between Zhejiang University and The Horticulture and Food Research Institute of NZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Song Chen.

Additional information

Lan Lan Shan and Xian Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, L.L., Li, X., Wang, P. et al. Characterization of cDNAs associated with lignification and their expression profiles in loquat fruit with different lignin accumulation. Planta 227, 1243–1254 (2008). https://doi.org/10.1007/s00425-008-0696-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0696-2

Keywords

Navigation