Skip to main content
Log in

Expression of flavonoid genes in the red grape berry of ‘Alicante Bouschet’ varies with the histological distribution of anthocyanins and their chemical composition

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The mature berry of Vitis vinifera ‘Alicante Bouschet’ is entirely red, but anthocyanin metabolism discloses elements of histological discontinuity. This provides an experimental system amenable to studies of compartmentalised secondary metabolism in a fleshly fruit. We compared microscopy of fixed berry sections and chemical composition of anthocyanin extracts with the expression of 41 flavonoid genes in three berry tissues. In the pericarp, anthocyanins formed membrane-encased spherical coalescences that gradually enlarged and were shuttled into the vacuolar system. The size and the intensity of in situ pigmentation and of colour extracts of anthocyanin vesicles all decreased with depth beneath the epidermis. Shades of red colour, and the quantity and types of anthocyanins in skin, flesh, and seed extracts were correlated with differences in the expression of flavonoid 3′,5′-hydroxylases and anthocyanin genes encoding transcription factors, enzymatic proteins, and transporters. Fine adjustments in the global transcriptional modulation of the pathway occurred distinctively in each tissue, within four groups of co-expressed genes that were more associated with either the pericarp or the seed, and with either early or late-ripening stages. All structural genes controlling early steps of the flavonoid pathway exist in the grapevine genome in multiple copies that were recruited by antagonistic branches of the pathway in the ‘Alicante Bouschet’ berry. Expression patterns of individual paralogs were spatiotemporally distinct from one another, in step with either anthocyanin genes or proanthocyanidin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alleweldt G, Engel M, Gebbing H (1981) Histologische untersuchungen an wienbeeren. Vitis 20:1–7

    Google Scholar 

  • Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP (2005) Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiol 139:652–663

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 59:2579–2596

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Di Gaspero G (2007) Regulation of the anthocyanin biosynthetic pathway in naturally occurring extreme phenotypes for red berry colour of Vitis vinifera. BMC Plant Biol 7:46

    Article  PubMed  Google Scholar 

  • Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, Di Gaspero G (2007) Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ 30:1381–1399

    Article  PubMed  CAS  Google Scholar 

  • Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA (2011) Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. J Exp Bot 62:4345–4354

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Muñoz N, Fernández-González M, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2009) Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. J Agr Food Chem 57:7883–7891

    Article  Google Scholar 

  • Chaïb J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR (2010) The grape microvine—a model system for rapid forward and reverse genetics of grapevines. Plant J 62:1083–1092

    PubMed  Google Scholar 

  • Conn S, Curtin C, Bézier A, Franco C, Zhang W (2008) Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J Exp Bot 59:3621–3634

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Franco C, Zhang W (2010) Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231:1343–1360

    Article  PubMed  CAS  Google Scholar 

  • Considine JA, Knox RB (1979) Development and histochemistry of the cells, cell wall, and cuticle of the dermal system of fruit of the grape, Vitis vinifera L. Protoplasma 99:347–365

    Article  Google Scholar 

  • Considine JA, Knox RB (1981) Tissue origins, cell lineages and patterns of cell division in the developing dermal system of the fruit of Vitis vinifera L. Planta 151:403–412

    Article  Google Scholar 

  • Coombe BG (1987) Distribution of solutes within the developing grape berry in relation to its morphology. Am J Enol Viticult 38:120–127

    CAS  Google Scholar 

  • Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648

    Article  PubMed  CAS  Google Scholar 

  • Czemmel S, Stracke R, Weisshaar B, Cordon N, Harris NN, Walker AR, Robinson SP, Bogs J (2009) The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synthesis in developing grape berries. Plant Physiol 151:1513–1530

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde JP, Mérillon JM, Hamdi S (2006) Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol 140:499–511

    Article  PubMed  CAS  Google Scholar 

  • Deluc L, Bogs J, Walker AR, Ferrier T, Decendit A, Merillon JM, Robinson SP, Barrieu F (2008) The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  Google Scholar 

  • Falginella L, Castellarin SD, Testolin R, Gambetta GA, Morgante M, Di Gaspero G (2010) Expansion and subfunctionalisation of flavonoid 3′,5′-hydroxylases in the grapevine lineage. BMC Genomics 11:562

    Article  PubMed  Google Scholar 

  • Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verriès C, Souquet JM, Mazauric JP, Klein M, Cheynier V, Ageorges A (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150:402–415

    Article  PubMed  CAS  Google Scholar 

  • Gomez C, Conejero G, Torregrosa L, Cheynier V, Terrier N, Ageorges A (2011) In vivo grapevine anthocyanin transport involves vesicle-mediated trafficking and the contribution of anthoMATE transporters and GST. Plant J 67:960–970

    Article  PubMed  CAS  Google Scholar 

  • Goto-Yamamoto N, Wan GH, Masaki K, Kobayashi S (2002) Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Sci 162:867–872

    Article  CAS  Google Scholar 

  • Grimplet J, Deluc LG, Tillett RL, Wheatley MD, Schlauch KA, Cramer GR, Cushman JC (2007) Tissue-specific mRNA expression profiling in grape berry tissues. BMC Genomics 8:187

    Article  PubMed  Google Scholar 

  • Grotewold E, Davies K (2008) Trafficking and sequestration of anthocyanins. Nat Prod Commun 3:1251–1258

    CAS  Google Scholar 

  • Hardie WJ, O’Brien TP, Jaudzems VG (1996) Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L. Aust J Grape Wine R 2:97–142

    Article  Google Scholar 

  • He JJ, Liu YX, Pan QH, Cui XY, Duan CQ (2010) Different anthocyanin profiles of the skin and the pulp of Yan7 (Muscat Hamburg × Alicante Bouschet) grape berries. Molecules 15:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Hichri I, Heppel SC, Pillet J, Léon C, Czemmel S, Delrot S, Lauvergeat V, Bogs J (2010) The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol Plant 3:509–523

    Article  PubMed  CAS  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  PubMed  CAS  Google Scholar 

  • Hugueney P, Provenzano S, Verriès C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A (2009) A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150:2057–2070

    Article  PubMed  CAS  Google Scholar 

  • Iandolino AB, Goes da Silva FG, Lim H, Choi H, Williams LE, Cook DR (2004) High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol Biol Rep 22:269–278

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Laitinen RA, Ainasoja M, Broholm SK, Teeri TH, Elomaa P (2008) Identification of target genes for a MYB-type anthocyanin regulator in Gerbera hybrida. J Exp Bot 59:3691–3703

    Article  PubMed  CAS  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    Article  PubMed  Google Scholar 

  • Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce-Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    Article  PubMed  CAS  Google Scholar 

  • Matus JT, Poupin MJ, Cañón P, Bordeu E, Alcalde JA, Arce-Johnson P (2010) Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.). Plant Mol Biol 72:607–620

    Article  PubMed  CAS  Google Scholar 

  • Mizuno H, Hirano K, Okamoto G (2006) Effect of anthocyanin composition in grape skin on anthocyanic vacuolar inclusion development and skin coloration. Vitis 45:173–177

    CAS  Google Scholar 

  • Nakamura M (1993) Anthocyanoplasts in Kyoho grapes. J Jap Soc Hortic Sci 62:353–358

    Article  CAS  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  PubMed  CAS  Google Scholar 

  • Poustka F, Irani NG, Feller A, Lu Y, Pourcel L, Frame K, Grotewold E (2007) A trafficking pathway for anthocyanins overlaps with the endoplasmic reticulum-to-vacuole protein-sorting route in Arabidopsis and contributes to the formation of vacuolar inclusions. Plant Physiol 145:1323–1335

    Article  PubMed  CAS  Google Scholar 

  • Pratt C (1971) Reproductive anatomy in cultivated grapes: a review. Am J Enol Viticult 22:92–109

    Google Scholar 

  • Robinson J (2006) The Oxford companion to wine, 3rd edn. Oxford University Press, London, p 840

    Google Scholar 

  • Santiago JL, González I, Gago P, Alonso-Villaverde V, Boso S, Martínez MC (2008) Identification of and relationships among a number of teinturier grapevines that expanded across Europe in the early 20th century. Aust J Grape Wine R 14:223–229

    Google Scholar 

  • Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18:207–208

    Article  PubMed  CAS  Google Scholar 

  • Terrier N, Torregrosa L, Ageorges A, Vialet S, Verriès C, Cheynier V, Romieu C (2009) Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiol 149:1028–1041

    Article  PubMed  CAS  Google Scholar 

  • Thompson MM, Olmo HP (1963) Cytohistological studies of cytochimeric and tetraploid grapes. Am J Bot 50:901–906

    Article  Google Scholar 

  • Torregrosa L, Fernandez L, Bouquet A, Boursiquot J-M, Pelsy F, Martinez-Zapater J-M (2011) Origins and consequences of somatic variation in grapevine. In: Zapater MM, Adam-Blondon AF, Kole C (eds) Genetics, genomics and breeding of grapes. Sciences Publishers, Enfield, NH, pp 68–92

    Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Carla Calligaro for preparation of berry sections, Ernesto Pascotto for assistance in microscope observations, Kaitlin McNally for technical work in expression analysis, Enrico Braidot and Enrico Peterlunger for HPLC analysis, Courtney Coleman for editing the manuscript, and Vivai Cooperativi Rauscedo for providing grape samples. This research was funded by the Regional Government of Friuli Venezia Giulia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Di Gaspero.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falginella, L., Di Gaspero, G. & Castellarin, S.D. Expression of flavonoid genes in the red grape berry of ‘Alicante Bouschet’ varies with the histological distribution of anthocyanins and their chemical composition. Planta 236, 1037–1051 (2012). https://doi.org/10.1007/s00425-012-1658-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1658-2

Keywords

Navigation