Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Oncidium and Odontoglosum orchid species have reduced display lives and are thus commercially less important than Phalaenopsis. One approach to prolonging display life permanently is to transform Oncidium and Odontoglossum with the ethylene receptor mutant gene etr1-1 from Arabidopsis under control of a flower specific promoter; this should reduce their sensitivity to exogenous ethylene. To achieve this it will be necessary to establish an efficient regeneration protocol using somatic embryogenesis and a routine Agrobacterium tumefaciens-mediated transformation procedure. Protocorm-like bodies (PLBs) of both orchid genera were regenerated from leaf tip explants. Leaf tips and PLBs, cultured in liquid and solid media, were compared as targets for genetic transformation. No transgenic shoots were obtained from leaf tips, while PLBs of Oncidium and Odontoglossum cultured on solid medium were successfully transformed with an expression vector containing nptII and gus genes driven by the cauliflower mosaic virus (CaMV) 35S promoter. Applying the A. tumefaciens strain EHA 105, transformation efficiencies of 1.3–2.7% were achieved for the investigated genotypes. Transformation with etr1-1 gene was achieved subsequently. Oncidium ‘Sweet Sugar’ has been successfully transformed and validated by PCR and Southern analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GUS:

β-Glucuronidase

MS:

Murashige & Skoog

TDZ:

Thidiazuron

References

  • Anonymous (2008) Orchideenkäufe steigen rasant. ZMP GmbH, Bonn, http://www.zmp.de. 8 April 2008

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442. doi:10.1007/s002990050752

    Article  CAS  Google Scholar 

  • Bovy AG, Angenent GC, Dons HJM, van Altvorst AC (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308. doi:10.1023/A:1009617804359

    Article  CAS  Google Scholar 

  • Celvenger DJ, Barret JE, Klee JH, Clark DG (2004) Factors affecting seed production in transgenic ethylene-insensitive Petunias. J Am Soc Hortic Sci 129:401–406

    Google Scholar 

  • Chang CH, Lee N, Chang TH (2003) Flower and bud wilting of potted Phalaenopsis caused by ethylene and darkness. J Chin Soc Hortic Sci 49:173–182

    Google Scholar 

  • Chen JT, Chang WC (2001) Effects of auxins and cytokinins on direct somatic embryogenesis on leaf explants of Oncidium ‘Gower Ramsey’. Plant Growth Regul 34:229–232. doi:10.1023/A:1013304101647

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2002) Effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis in Oncidium ‘Gower Ramsey’. Plant Cell Tissue Organ Cult 69:41–44. doi:10.1023/A:1015004912408

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2003a) 1-aminocyclopropane-1-carboxylic acid enhanced direct somatic embryogenesis from Oncidium leaf cultures. Biol Plant 46:455–458. doi:10.1023/A:1024307025893

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2003b) Effects of GA3, ancymidol, cycocel and paclobutrazol on direct somatic embryogenesis of Oncidium in vitro. Plant Cell Tissue Organ Cult 72:105–108. doi:10.1023/A:1021235700751

    Article  CAS  Google Scholar 

  • Chen JT, Chang WC (2006) Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol Plant 50:169–173. doi:10.1007/s10535-006-0002-8

    Article  Google Scholar 

  • Chen JT, Chang C, Chang WC (1999) Direct somatic embryogenesis on leaf explants of Oncidium ‘Gower Ramsey’ and subsequent plant regeneration. Plant Cell Rep 19:143–149. doi:10.1007/s002990050724

    Article  CAS  Google Scholar 

  • Chin PC, Mishiba K, Mii M (2007) Agrobacterium-mediated transformation of protocorm-like bodies in Cymbidium. Plant Cell Rep 26:735–743. doi:10.1007/s00299-006-0284-5

    Article  PubMed  CAS  Google Scholar 

  • Clark DG, Gubrium EK, Barret JE, Neil TA, Klee JK (1999) Root formation in ethylene-insensitive plants. Plant Physiol 121:53–59. doi:10.1104/pp.121.1.53

    Article  PubMed  CAS  Google Scholar 

  • Dorokhov DB, Klocke E (1997) A rapid and economic technique for RAPD analysis of plant genomes. Genetika 33:443–450

    Google Scholar 

  • Gubrium EK, Celvenger DJ, Clark DG, Barret JE, Neil TA (2000) Reproduction and horticultural performance of transgenic ethylene-insensitive Petunias. J Am Soc Hortic Sci 125:277–281

    Google Scholar 

  • Heyes JA, Johnston JW (1998) 1-Methylcyclopropene extends Cymbidium orchid vase life and prevents damaged pollinia from accelerating senescence. N Z J Crop Hortic Sci 26:319–324

    CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180. doi:10.1038/303179a0

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Huang CC (1998) Ethylene production of Oncidium flower and the change of flower quality affected by ethylene treatment and pollinia cap removal. J Agric Res China 47:125–134

    CAS  Google Scholar 

  • Huang CC, Wang TT, Huang HS (1999) Role of ethylene in the early senescence of chilling injured Phalaenopsis floret. J Agric Res China 48:84–100

    Google Scholar 

  • Huang CC, Tu WC, Chen HY, Tsai CY, Lai SF, Huang HS (2003) Effect of ‘TARI’s onc1’ and 1-MCP on the quality of Oncidium cut flowers after simulated transportation and quarantine fumigation. J Chin Soc Hortic Sci 49:55–62

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi:10.1007/BF02667740

    Article  CAS  Google Scholar 

  • Ketsa S, Luangsuwalai K (1996) The relationship between 1-aminocyclopropane-1-carboxylic acid content in pollinia, ethylene production and senescence of pollinated Dendrobium orchid flowers. Postharvest Biol Technol 8:57–64. doi:10.1016/0925-5214(95)00053-4

    Article  CAS  Google Scholar 

  • Ketsa S, Rugkong A (1999) Senescence of Dendrobium ‘Pompadour’ flowers following pollination. J Hortic Sci Biotechnol 74:608–613

    Google Scholar 

  • Ketsa S, Rugkong A (2000) Ethylene production, senescence and ethylene sensitivity of Dendrobium ‘Pompadour’ flowers following pollination. J Hortic Sci Biotechnol 75:149–153

    CAS  Google Scholar 

  • Kuo HL, Chen JT, Chang WC (2005) Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cell Dev Biol Plant 41:453–456. doi:10.1079/IVP2005644

    Article  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967. doi:10.1038/nbt1091-963

    Article  PubMed  CAS  Google Scholar 

  • Li SH, Kuoh CS, Chen YH, Chen HH, Chen WH (2005) Osmotic sucrose enhancement of single-cell embryogenesis and transformation efficiency in Oncidium. Plant Cell Tissue Organ Cult 81:183–192. doi:10.1007/s11240-004-4955-z

    Article  Google Scholar 

  • Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003a) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998. doi:10.1007/s00299-003-0614-9

    Article  PubMed  CAS  Google Scholar 

  • Liau CH, Lu JC, Prasad V, Hsiao HH, You SJ, Lee JT, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003b) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336. doi:10.1023/A:1023343620729

    Article  PubMed  CAS  Google Scholar 

  • Lin HH, Lee N, Chang TH (2003) Effects of ethylene and 1-MCP pretreatment on flower wilting of potted Phalaenopsis amabilis var. Formosa Shimadzu. J Chin Soc Hortic Sci 49:199–210

    Google Scholar 

  • Mishiba K, Chin DP, Mii M (2005) Agrobacterium-mediated transformation of Phalaenopsis by targeting protocorms at an early stage after germination. Plant Cell Rep 24:297–303. doi:10.1007/s00299-005-0938-8

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Park SY, Yeung EC, Chakrabarty D, Paek KY (2002) An efficient direct induction of protocorm-like bodies from leaf subepidermal cells of Doritaenopsis hybrid using thin-section culture. Plant Cell Rep 21:46–51. doi:10.1007/s00299-002-0480-x

    Article  CAS  Google Scholar 

  • Philosoph-Hadas S, Golan O, Rosenberger I, Salim S, Kochanek B, Meir S (2005) Efficiency of 1-MCP in neutralizing ethylene effects in cut flowers and potted plants following simultaneous or sequential application. Acta Hortic 669:321–328

    CAS  Google Scholar 

  • Porat R, Borochov A, Halevy AH, O’Neill SD (1994) Pollination-induced senescence of Phalaenopsis petals. The wilting process, ethylene production and sensitivity to ethylene. Plant Growth Regul 15:129–136. doi:10.1007/BF00024102

    Article  CAS  Google Scholar 

  • Porat R, Shlomo E, Serek M, Sisler EC, Borochov A (1995) 1-Methylcyclopropene inhibits ethylene action in cut phlox flowers. Postharvest Biol Technol 6:313–319. doi:10.1016/0925-5214(95)00014-W

    Article  CAS  Google Scholar 

  • Raffeiner B, Serek M, Winkelmann T (2009) 1-Methylcyclopropene inhibits ethylene effects in cut inflorescences and potted plants of Oncidium and Odontoglossum orchid species. Eur J Hortic Sci 74:10–15

    CAS  Google Scholar 

  • Sanikhani M, Mibus H, Stummann BM, Serek M (2008) Kalanchoe blossfeldiana plants expressing the Arabidopsis etr1-1 allele show reduced ethylene sensitivity. Plant Cell Rep 27:729–737. doi:10.1007/s00299-007-0493-6

    Article  PubMed  CAS  Google Scholar 

  • Serek M, Sisler EC (2001) Efficacy of ethylene binding in improvement of the postharvest characteristics of potted flowering plants. Postharvest Biol Technol 23:161–166. doi:10.1016/S0925-5214(01)00109-0

    Article  CAS  Google Scholar 

  • Sisler EC, Serek M (2003) Compounds interacting with the ethylene receptor in plants. Plant Biol 5:473–480. doi:10.1055/s-2003-44782

    Article  Google Scholar 

  • Sisler EC, Alwan R, Goren R, Serek M, Apelbaum A (2003) 1-Substituted cyclopropenes: effective blocking agents for ethylene action in plants. Plant Growth Regul 40:223–228. doi:10.1023/A:1025080420990

    Article  CAS  Google Scholar 

  • Sjahril R, Mii M (2006) High-efficiency Agrobacterium-mediated transformation of Phalaenopsis using meropenem, a novel antibiotic to eliminate Agrobacterium. J Hortic Sci Biotechnol 81:458–464

    Google Scholar 

  • Sriskandarajah S, Mibus H, Serek M (2007) Transgenic Campanula carpatica plants with reduced ethylene sensitivity. Plant Cell Rep 26:805–813. doi:10.1007/s00299-006-0291-6

    Article  PubMed  CAS  Google Scholar 

  • Su YJ, Chen JT, Chang WC (2006) Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol Plant 50:107–110. doi:10.1007/s10535-005-0081-y

    Article  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447. doi:10.1038/nbt0597-444

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann T, Geier T, Preil W (2006) Commercial in vitro plant production in Germany in 1985–2004. Plant Cell Tissue Organ Cult 86:319–327. doi:10.1007/s11240-006-9125-z

    Article  Google Scholar 

  • Woltering EJ, van Doorn WG (1988) Role of ethylene in senescence of petals; morphological and taxonomical relationship. J Exp Bot 39:1605–1615. doi:10.1093/jxb/39.11.1605

    Article  CAS  Google Scholar 

  • Yang J, Lee HJ, Shin DH, Oh SK, Seon JH, Paek KY, Han KH (1999) Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep 18:978–984. doi:10.1007/s002990050694

    Article  CAS  Google Scholar 

  • You SJ, Liau CH, Huang HE, Feng TY, Prasad V, Hsiao HH, Lu JC, Chan MT (2003) Sweet pepper ferredoxin-like protein (pflp) gene as novel selection marker for orchid transformation. Planta 217:60–65

    PubMed  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2001) Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep 20:301–305. doi:10.1007/s002990100334

    Article  CAS  Google Scholar 

  • Zhang XS, Zhong HW, Lu C, Huang X, Cao ZX (1996) Pollination-induced ethylene synthesis and 1-aminocyclopropane-1-carboxylate oxidase gene expression in the gynoecium of Phalaenopsis orchid flower. Acta Bot Sin 38:375–378

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the grant for PhD study (BR) from Valtl Raffeiner, Gartenbau Valtl Raffeiner, Italy. The authors thank Dr. Viola Mußmann and Dr. Heiko Mibus-Schoppe for their help with Southern hybridisations, and Prof. Errol Hewett (Massey University, Palmerston North, New Zealand) for linguistic editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traud Winkelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raffeiner, B., Serek, M. & Winkelmann, T. Agrobacterium tumefaciens-mediated transformation of Oncidium and Odontoglossum orchid species with the ethylene receptor mutant gene etr1-1 . Plant Cell Tiss Organ Cult 98, 125–134 (2009). https://doi.org/10.1007/s11240-009-9545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9545-7

Keywords

Navigation