Skip to main content

Advertisement

Log in

Contrasting phenology of Eucalyptus grandis fine roots in upper and very deep soil layers in Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

While the role of deep roots in major ecosystem services has been shown for tropical forests, there have been few direct measurements of fine root dynamics at depths of more than 2 m. The factors influencing root phenology remain poorly understood, creating a gap in the knowledge required for predicting the effects of climate change. We set out to gain an insight into the fine root phenology of fast-growing trees in deep tropical soils.

Methods

Fine root growth and mortality of Eucalyptus grandis trees were observed fortnightly using minirhizotrons down to a soil depth of 6 m, from 2 to 4 years after planting.

Results

In the topsoil, the highest live root length production was during the rainy summer (20 cm m−2 d−1) whereas, below 2 m deep, it was at the end of the dry winter (51 cm m−2 d−1). The maximum root elongation rates increased with soil depth to 3.6 cm d−1 in the 5–6 m soil layer.

Conclusions

Our study shows that the effect of the soil depth on the seasonal variations in fine root growth should be taken into account when modelling the carbon, water and nutrient cycles in forests growing on deep tropical soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramoff RZ, Finzi AC (2015) Are above and below-ground phenology in sync? New Phytol 205:1054–1061

    Article  PubMed  Google Scholar 

  • Ahrens B, Hansson K, Solly EF, Schrumpf M (2014) Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons. New Phytol 204:932–942

    Article  CAS  PubMed  Google Scholar 

  • Alton PB (2014) Reconciling simulations of seasonal carbon flux and soil water with observations using tap roots and hydraulic redistribution: a multi-biome FLUXNET study. Agric For Meteorol 198-199:309–319

    Article  Google Scholar 

  • Battie-Laclau P, Laclau JP, Domec JP, Christina M, Bouillet JP, de Cassia Piccolo M, de Moraes Gonçalves JL, Moreira RME, Krusche AV, Bouvet JM, Nouvellon Y (2014) Effects of potassium and sodium supply on drought-adaptive mechanisms in Eucalyptus grandis plantations. New Phytol 203:401–413

    Article  CAS  PubMed  Google Scholar 

  • Booth TH (2013) Eucalypt plantations and climate change. For Ecol Manag 301:28–34

    Article  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazonian forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc., B Biol Sci 363:1839–1848

    Article  Google Scholar 

  • Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90:1378–1388

    Article  PubMed  Google Scholar 

  • Cabral OMR, Rocha HR, Gash JHC, Ligo MAV, Freitas HC, Tatsch JD (2010) The energy and water balance of eucalyptus plantation in southeast Brazil. J Hydrol 388:208–2016

    Article  Google Scholar 

  • Campoe OC, Stape JL, Laclau JP, Marsden C, Nouvellon Y (2012) Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity, in Sao Paulo state, Brazil. Tree Physiol 32:696–706

    Article  CAS  PubMed  Google Scholar 

  • Chairungsee N, Gay F, Thaler P, Kasemsap P, Thanisawanyangkura S, Chantuma A, Jourdan C (2013) Impact of tapping and soil water status on fine root dynamics in a rubber tree plantation in Thailand. Front Plant Sci 4:538

    Article  PubMed  PubMed Central  Google Scholar 

  • Christina M, Laclau JP, Gonçalves JLM, Jourdan C, Nouvellon Y, Bouillet JP (2011) Almost symmetrical vertical growth rates above and below ground in one of the world’s most productive forests. Ecosphere 2:1–10

    Article  Google Scholar 

  • Christina M, Le Maire G, Battie-Laclau P, Nouvellon Y, Bouillet JP, Jourdan C, Gonçalves JLM, Laclau JP (2015) Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light-use efficiency in Eucalyptus grandis plantations. Glob Chang Biol 21:2022–2039

    Article  PubMed  Google Scholar 

  • Christina M, Nouvellon Y, Laclau JP, Stape JL, Bouillet JP, Lambais GR, le Maire G (2017) Importance of deep water uptake in tropical eucalypt forest. Funct Ecol 31:509–519

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life-tables. J R Stat Soc Ser B Methodol 34:187–220

    Google Scholar 

  • da Silva EV, Bouillet JP, Gonçalves JLM, Abreu Junior CH, Trivelin PCO, Hinsinger P, Jourdan C, Nouvellon Y, Stape JL, Laclau JP (2011) Functional specialization of Eucalyptus fine roots: contrasting potential uptake rates for nitrogen, potassium and calcium tracers at varying soil depths. Funct Ecol 25:996–1006

    Article  CAS  Google Scholar 

  • Davidson E, Lefebvre PA, Brando PM, Ray DM, Trumbore SE, Solorzano LA, Ferreira JN, Bustamante MMC, Nepstad DC (2011) Carbon inputs and water uptake in deep soils of an eastern Amazon forest. For Sci 57:51–58

    Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • Forrester DJ, Collopy JJ, Morris JD (2010) Transpiration along an age series of Eucalyptus globulus plantations in southeastern Australia. For Ecol Manag 259:1754–1760

    Article  Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Cook AC, Markewitz D, Richter DD (2001) The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429

    Article  CAS  PubMed  Google Scholar 

  • Germon A, Cardinael R, Prieto I, Mao Z, Kim JH, Stokes A, Dupraz C, Laclau JP, Jourdan C (2016) Unexpected phenology and lifespan of shallow and deep fine roots of walnut trees grown in a Mediterranean agroforestry system. Plant Soil 401:409–426

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Godbold DL, Fritz HW, Jentschke G, Meesenburg H, Rademacher P (2003) Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol 23:915–921

    Article  PubMed  Google Scholar 

  • Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1:274–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2008) Fine root dynamics along a 2.000-m elevation transect in south Ecuadorian mountain rainforests. Plant Soil 313:155–166

    Article  CAS  Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008a) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456

    Article  PubMed  Google Scholar 

  • Guo D, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008b) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–745

    Article  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Temporal and depth-related patterns of fine root dynamics in northern hardwood forests. J Ecol 84:167–176

    Article  Google Scholar 

  • Hendricks JJ, Hendrick RL, Wilson CA, Mitchell RJ, Pecot SD, Guo DL (2006) Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review. J Ecol 94:40–57

    Article  Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289

    Article  PubMed  Google Scholar 

  • Joslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ (2006) Fine-root turnover and patterns and their relationship to root diameter and soil depth in a 14C-labeled hardwood forest. New Phytol 172:523–535

    Article  CAS  PubMed  Google Scholar 

  • Jourdan C, Silva EV, Gonçalves JLM, Ranger J, Moreira RM, Laclau JP (2008) Fine root production and turnover in Brazil eucalyptus plantations under contrasting nitrogen fertilization regimes. For Ecol Manag 258:396–404

    Article  Google Scholar 

  • King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002) Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytol 154:389–398

    Article  Google Scholar 

  • Laclau JP, Ranger J, Gonçalves JLM, Maquère V, Krushe AV, Thongo M’Bou A, Nouvellon Y, Saint-André L, Bouillet JP, Piccolo MC, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785

    Article  Google Scholar 

  • Laclau JP, da Silva EA, Lambais GR, Bernoux M, le Maire G, Stape JL, Bouillet JP, Gonçalves JLM, Jourdan C, Nouvellon Y (2013) Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Front Plant Sci 4:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Haven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • le Maire G, Nouvellon Y, Christina M, Ponzoni FJ, Gonçalves JLM, Bouillet JP, Laclau JP (2013) Tree and stand light use efficiencies over a full rotation of single- and mixed-species Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 288:31–42

    Article  Google Scholar 

  • Luyssaert S, Inglima I, Jung M et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Chang Biol 13:2509–2537

    Article  Google Scholar 

  • Maeght JL, Rewald B, Pierret A (2013) How to study deep roots – and why it matters. Front Plant Sci 4:299

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeght JL, Gonkhamdee S, Clément C, Ayutthaya SIN, Stokes A, Pierret A (2015) Seasonal patterns of fine root production and turnover in a mature rubber tree (Hevea brasiliensis Müll. Arg.) stand-differentiation with soil depth and implications for soil carbon stocks. Front Plant Sci 6:1022

    Article  PubMed  PubMed Central  Google Scholar 

  • Majdi H, Damm E, Nylund JE (2001) Longevity of mycorrhizal roots depends on branching order and nutrient availability. New Phytol 150:195–202

    Article  Google Scholar 

  • Majdi H, Pregitzer K, Morén AS, Nylund JE, Agren GI (2005) Measuring fine root turnover in forest ecosystems. Plant Soil 276:1–8

    Article  CAS  Google Scholar 

  • Maquère V (2008) Dynamics of mineral elements under a fast-growing Eucalyptus plantation in Brazil: implication for soil sustainability. PhD thesis, Agroparitech, Paris, 369 pp.

  • Mareschal L, Laclau JP, Nizila JDD, Versini A, Koutika LS, Mazoumbou JC, Deleporte P, Bouillet JP, Ranger J (2013) Nutrient leaching and deep drainage under eucalyptus plantations managed in short rotations after afforestation of an African savanna: two 7-year time series. For Ecol Manag 307:242–254

    Article  Google Scholar 

  • McComarck ML, Guo D (2014) Impacts of environmental factors on fine root lifespan. Front Plant Sci 5:205. https://doi.org/10.3389/fpls.2014.00205

    Google Scholar 

  • Misra RK (1999) Root and shoot elongation of rhizotron-grown seedlings of Eucalyptus nitens and Eucalyptus globulus in relation to temperature. Plant Soil 206:37–46

    Article  Google Scholar 

  • Moroni MT, Worledge D, Beadle CL (2003) Root distribution of Eucalyptus nitens and E. globulus in irrigated and droughted soil. For Ecol Manag 177:399–407

    Article  Google Scholar 

  • Nardini A, Casol V, Dal Borgo A, Savi T, Stenni B, Bertoncin P, Zini L, McDowell NG (2016) Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ. 39:618–627

    Article  CAS  PubMed  Google Scholar 

  • Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forest and pastures. Nature 372:666–669

    Article  CAS  Google Scholar 

  • Nouvellon Y, Laclau JP, Epron D, le Maire G, Bonnefond JM, Gonçalves JLM, Bouillet JP (2012) Production and carbon allocation in monocultures and mixed-species plantations of Eucalyptus grandis and Acacia mangium in Brazil. Tree Physiol 32:680–695

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RS, Bezerra L, Davidson EA, Pinto F, Klink CA, Nepstad DC, Moreira A (2005) Deep root function in soil water dynamics in cerrado savannas of central Brazil. Funct Ecol 19:574–581

    Article  Google Scholar 

  • Pate J, Arthur D (1998) δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117:301–311

    Article  PubMed  Google Scholar 

  • Pfautsch S, Rennenberg H, Bell TL, Adams MA (2009) Nitrogen uptake by Eucalyptus regnans and Acacia spp. - preferences, resource overlap and energetic costs. Tree Physiol 29:389–399

    Article  CAS  PubMed  Google Scholar 

  • Pierret A, Maeght JL, Clément C, Montoroi JP, Hartmann C, Gonkhamdee S (2016) Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research. Ann Bot 118:621–635

    Article  PubMed Central  Google Scholar 

  • Pinheiro RC, de Deus JC Jr, Nouvellon Y, Campoe OC, Stape JL, Aló LL, Guerrini IA, Jourdan C, Laclau JP (2016) A fast exploration of very deep soil layers by Eucalyptus seedlings and clones in Brazil. For Ecol Manag 366:143–152

    Article  Google Scholar 

  • Pradier C, Hinsinger P, Laclau JP, Bouillet JP, Guerrini IA, Gonçalves JLM, Asensio V, Abreu-Junior CH, Jourdan C (2017) Rainfall reduction impacts rhizosphere biogeochemistry in eucalypts grown in a deep Ferralsol in Brazil. Plant Soil:1–16. doi:https://doi.org/10.1007/s11104-016-3107-7

  • Pregitzer KS, Hendrick RL (1996) Applications of minirhizotrons to understand root function in forest and other natural ecosystem. Plant Soil 185:293–304

    Article  Google Scholar 

  • Radville L, McCormack ML, Post E, Eissenstat DM (2016) Root phenology in a changing climate. J Exp Bot 67:3617–3628

    Article  CAS  PubMed  Google Scholar 

  • Rewald B, Ephrath JE (2013) Minirhizotron techniques. In: Eshel A, Beeckman T (eds) Plant Roots: The Hidden Half. CRC Press, New York, pp 42.1–42.15

    Chapter  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH, Giardina CP, Senock RS (2004) An experimental test of the causes of forest growth decline with stand age. Ecol Monogr 74:393–414

    Article  Google Scholar 

  • Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010) Factors controlling Eucalyptus productivity: how resource availability and stand structure alter production and carbon allocation. For Ecol Manag 259:1695–1703

    Article  Google Scholar 

  • Rytter RM (2013) The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis. Tree Physiol 33:924–939

    Article  CAS  PubMed  Google Scholar 

  • Saleska SR, Didan K, Huete AR, da Rocha H (2007) Amazon forests green-up during 2005 drought. Science 318:612

    Article  CAS  PubMed  Google Scholar 

  • Satomura T, Fukuzawa K, Horikoshi T (2007) Considerations in the study of tree fine-root turnover with minirhizotrons. Plant Root 1:34–45

    Article  Google Scholar 

  • Scartazza A, Moscatello S, Matteucci G, Battistelli A, Brugnoli E (2015) Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source–sink relationships in a Mediterranean beech forest. Tree Physiol 35:829–839

    Article  CAS  PubMed  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002a) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002b) The global biogeography of roots. Ecol Monogr 3:311–328

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal simbioses, 2nd edn. Academic Press, London

    Google Scholar 

  • Stape JL, Binkley D, Ryan MG (2008) Production and carbon allocation in a clonal eucalyptus plantation with water and nutrient manipulations. For Ecol Manag 255:920–930

    Article  Google Scholar 

  • Strand AE, Pritchard SG, McCormack ML, Davis MA, Oren R (2008) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319:456–458

    Article  CAS  PubMed  Google Scholar 

  • Team R (2013) R development core team. RA Lang Environ Stat Comput 55:275–286

  • Therneau T (2014) A package for survival analysis in S. R package version 2.37–7

  • Thongo M’bou A, Jourdan C, Deleporte P, Nouvellon Y, Saint-André L, Bouillet JP, Mialoundama F, Mabiala A, Epron D (2008) Root elongation in tropical eucalyptus plantations: effects of soil water content. Ann For Sci 65:209

    Article  Google Scholar 

  • Tierney GL, Fahey TJ (2001) Evaluating minirhizotron estimates of fine root longevity and production in the forest floor of a temperate broadleaf forest. Plant Soil 229:167–176

    Article  CAS  Google Scholar 

  • Tierney GL, Fahey TJ (2002) Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Can J For Res 32:1692–1697

    Article  Google Scholar 

  • Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhughs RD, Discroll CT, Yavitt JB (2003) Environmental control of fine root dynamics in a northern hardwood forest. Glob Chang Biol 9:670–679

    Article  Google Scholar 

  • Tng DYP, Williamson GJ, Jordan GJ, Bowman DMJS (2012) Giant eucalypts - globally unique fire-adapted rain-forest trees? New Phytol 196:1001–1014

    Article  Google Scholar 

  • Tng DYP, Jordan GJ, Bowman DMJS (2013) Plant traits demonstrate that temperate and tropical giant eucalypt forests are ecologically convergent with rainforest not savannah. PLoS ONE 8:e84378

    Article  PubMed  PubMed Central  Google Scholar 

  • Trumbore SE, da Costa ES, Nepstad DC, de Camargo PB, Martinelli LA, Ray D, Restom T, Silver W (2006) Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Chang Biol 12:217–229

    Article  Google Scholar 

  • Vargas R, Allen MF (2008) Dynamics of fine root, fungal rhizomorphs, and soil respiration in a mixed temperate Forest: integrating sensors and observations. Vadose Zone J 7:1055–1064

    Article  Google Scholar 

  • Vargas R, Trumbore SE, Allen MF (2009) Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytol 182:710–718

    Article  PubMed  Google Scholar 

  • Wells CE, Eissenstat DM (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82:882–892

    Article  Google Scholar 

  • Wu QS, Xia RS (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank staff of Itatinga Research Station (ESALQ/USP) and Eder Araujo da Silva (Floragro) for their technical support. George R. Lambais was funded by the São Paulo Research Foundation (FAPESP, project 2011/06412-3). The study received financial support from the Eucflux project funded by Brazilian forestry companies (AcelorMittal, Cenibra, Bahia Specialty, Duratex, Fibria, International Paper, Klabin, Suzano, and Vallourec), IPEF, CIRAD, North Carolina State University, Agence Nationale de la Recherche (MACACC project ANR-13-AGRO-0005, AGROBIOSPHERE 2013 program), and SOERE F-ORE-T, which is supported annually by Ecofor, Allenvi and the French National Research Infrastructure ANAEE-F (http://www.anaee-france.fr).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Laclau.

Additional information

Responsible Editor: Peter Christie

Electronic supplementary material

ESM 1

(DOCX 2486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambais, G.R., Jourdan, C., de Cássia Piccolo, M. et al. Contrasting phenology of Eucalyptus grandis fine roots in upper and very deep soil layers in Brazil. Plant Soil 421, 301–318 (2017). https://doi.org/10.1007/s11104-017-3460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3460-1

Keywords

Navigation