Skip to main content
Log in

Characterization of the Oxide Scale Formed on T12 Water Wall Tube After Long-term Service in Supercritical Power Plant

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Oxide scale control is one of the critical maintenance issues in fossil fuel power plant. Hence, the water treatment of the feed water has been changed from all-volatile treatment (AVT) to oxygenated treatment (OT) by added some amount of oxygen in the system to form a stable oxide and minimize the scale growth rate. In this work, the oxide scales formed on T12 water wall tube after one cycle of chemical cleaning treatment under OT condition in a supercritical coal power plant were characterized by using various methods. It was found that the oxide scale formed on the inner surface of the tube had a multi-layer structure with a porous outer layer consisting of Fe3O4 and Cr-rich α-Fe2O3 oxides and a dense inner layer consisting of Cr-rich spinel oxide. A Cr- and Mn-enriched outermost layer was also observed. Cavities, pits, and exfoliation were observed in the oxide scales. The cavities and grain boundaries behaved as the short path of the diffusion of oxygen into the metal. Intergranular oxidation was observed between the inner layer of oxide scale and matrix. The distribution, morphology, and chemical compositional of these oxides were assessed and discussed from a point of view of the suitability of current chemical cleaning solution and procedure which has been used for AVT descaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R. Viswanathan, J. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, Journal of Materials Engineering and Performance 14, 281 (2005).

    Article  Google Scholar 

  2. F. Starr, J. Castle, and R. Walker, Materials at High Temperature 21, 147 (2004).

    Article  Google Scholar 

  3. X. Zhong, X. Wu, and E.-H. Han, Corrosion Science 90, 511 (2015).

    Article  Google Scholar 

  4. H. Xu, Z.-L. Zhu, and N.-Q. Zhang, Oxidation of Metals 82, 21 (2014).

    Article  Google Scholar 

  5. N.-Q. Zhang, H. Xu, B.-R. Li, Y. Bai, and D.-Y. Liu, Corrosion Science 56, 123 (2012).

    Article  Google Scholar 

  6. J. Zurek and W.J. Quadakkers, Corrosion 71, 1342 (2015).

    Article  Google Scholar 

  7. J. Zurek, E. De Bruycker, S. Huysmans, and W.J. Quadakkers, Corrosion 70, 112 (2014).

    Article  Google Scholar 

  8. K. Yin, S. Qiu, R. Tang, Q. Zhang, and L. Zhang, Journal of the Supercritical Fluids 50, 235 (2009).

    Article  Google Scholar 

  9. L. Tan, Y. Yang, and T.R. Allen, Corrosion Science 48, 3123 (2006).

    Article  Google Scholar 

  10. Y. Chen, K. Sridharan, and T. Allen, Corrosion Science 48, 2843 (2006).

    Article  Google Scholar 

  11. M. Montgomery, S.A. Jensen, F. Rasmussen, and T. Vilhelmsen, Corrosion Engineering Science and Technology 44, 196 (2009).

    Article  Google Scholar 

  12. J. Jianmin, M. Montgomery, O.H. Larsen, and S.A. Jensen, Materials and Corrosion 56, 459 (2005).

    Article  Google Scholar 

  13. A.N. Hansson, H. Danielsen, F.B. Grumsen, and M. Montgomery, Materials and Corrosion 61, 665 (2010).

    Google Scholar 

  14. N.-H. Lee, S. Kim, B.-H. Choe, K.-B. Yoon, and D.-I. Kwon, Engineering Failure Analysis 16, 2031 (2009).

    Article  Google Scholar 

  15. D.P. Liu, Z.H. Ai, J.C. Hu, Journal of Advanced Materials Research 239–242, 3171 (2011).

    Google Scholar 

  16. X. Zhong, X. Wu, and E.-H. Han, Journal of the Supercritical Fluids 72, 68 (2012).

    Article  Google Scholar 

  17. T. Miyazawa, S. Uchida, T. Satoh, Y. Morishima, T. Hirose, Y. Satoh, K. Iinuma, Y. Wada, H. Hosokawa, and N. Usui, Journal of Nuclear Science and Technology 42, 233 (2005).

    Article  Google Scholar 

  18. T. Miyazawa, T. Terachi, S. Uchida, T. Satoh, T. Tsukada, Y. Satoh, Y. Wada, and H. Hosokawa, Journal of Nuclear Science and Technology 43, 884 (2006).

    Article  Google Scholar 

  19. J.E. Maslar, W.S. Hurst, W.J. Bowers, J.H. Hendricks, and M.I. Aquino, Journal of the Electrochemical Society 147, 2532 (2000).

    Article  Google Scholar 

  20. C.H. Hsu and F. Mansfeld, Corrosion 57, 747 (2001).

    Article  Google Scholar 

  21. J. Żurek, E. Wessel, L. Niewolak, F. Schmitz, T.U. Kern, L. Singheiser, and W.J. Quadakkers, Corrosion Science 46, 2301 (2004).

    Article  Google Scholar 

  22. L. Tan, Y. Yang, and T.R. Allen, Corrosion Science 48, 4234 (2006).

    Article  Google Scholar 

  23. J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, and W.J. Quadakkers, Corrosion Science 48, 3428 (2006).

    Article  Google Scholar 

  24. J. Shen, L. Zhou, and T. Li, Oxidation of Metals 48, 347 (1997).

    Article  Google Scholar 

  25. H.E. Evans, Material Science and Engineering A 120–121, 139 (1989).

    Article  Google Scholar 

  26. H.E. Evans, G.P. Mitchell, R.C. Lobb, and D.R.J. Owen, Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 440, 1 (1993).

    Article  Google Scholar 

  27. H.E. Evans, International Materials Review 40, 1 (1995).

    Article  Google Scholar 

  28. W. Christi, A. Rahmel, M. Schütze, Oxidation of Metals 31, 1 (1989).

    Article  Google Scholar 

  29. W. Christl, A. Rahmel, and M. Schütze, Oxidation of Metals 31, 35 (1989).

    Article  Google Scholar 

  30. M.G. Fontana, Corrosion Engineering, 3rd edn. (McGraw-Hill, New York, 1986).

    Google Scholar 

  31. S.Y. Persaud, S. Ramamurthy, A. Korinek, G.A. Botton, and R.C. Newman, Corrosion Science 106, 117 (2016).

    Article  Google Scholar 

  32. F.H. Stott, G.C. Wood, Y. Shida, D.P. Whittle, and B.D. Bastow, Corrosion Science 21, 599 (1981).

    Article  Google Scholar 

  33. G.C. Wood, F.H. Stott, D.P. Whittle, Y. Shida, and B.D. Bastow, Corrosion Science 23, 9 (1983).

    Article  Google Scholar 

  34. Y. Shida, G.C. Wood, F.H. Stott, D.P. Whittle, and B.D. Bastow, Corrosion Science 21, 581 (1981).

    Article  Google Scholar 

  35. H.J. Grabke and G.H. Meier, Oxidation of Metals 44, 147 (1995).

    Article  Google Scholar 

  36. G.M. Ecer and G.H. Meier, Oxidation of Metals 13, 119 (1979).

    Article  Google Scholar 

  37. A. Katsman, H.J. Grabke, and L. Levin, Oxidation of Metals 46, 313 (1996).

    Article  Google Scholar 

  38. X. Zhong, X. Wu, and E.-H. Han, Journal of Materials Science and Technology 34, 561 (2018).

    Article  Google Scholar 

  39. L. Bataillou, C. Desgranges, L. Martinelli, and D. Monceau, Corrosion Science 136, 148 (2018).

    Article  Google Scholar 

  40. P.M. Scott and M.L. Calvar, in 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (TMS, Warrendale, 1993), pp. 657–665.

  41. A.F. Gourgues and E. Andrieu, Material Science and Engineering A 351 39 (2003).

    Article  Google Scholar 

  42. L.E. Thomas and S.M. Bruemmer, Corrosion 56, 572 (2000).

    Article  Google Scholar 

  43. S.M. Bruemmer and L.E. Thomas, Surface Interface Analysis 31, 571 (2001).

    Article  Google Scholar 

  44. M.B. Capell and S.G. Was, Metallurgical and Materials Transactions A 38, 1244 (2007).

    Article  Google Scholar 

  45. H. Dugdale, D.E.J. Armstrong, E. Tarleton, S.G. Roberts, S. Lozano-Perez, Acta Materialia 61, 4707 (2013).

    Article  Google Scholar 

  46. J. Dohr, E. Tarleton, D.J. Armstrong, T. Couvant, and S. Lozano-Perez, in Proceedings of the 17th International Symposium on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Ottawa, Canada, 9–13 August 2015, TMS/CNS.

Download references

Acknowledgements

This work has been performed as a part of a joint program which is financially supported Tohoku Electric Power Co., Inc. The authors would like to thank Prof. Yutaka Watanabe and Assistant Prof. Hiroshi Abe of Tohoku University for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Hamdani, F., Xu, J. et al. Characterization of the Oxide Scale Formed on T12 Water Wall Tube After Long-term Service in Supercritical Power Plant. Oxid Met 91, 705–727 (2019). https://doi.org/10.1007/s11085-019-09905-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09905-1

Keywords

Navigation