Skip to main content
Log in

Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanism of selective internal oxidation (SIO) for intergranular stress corrosion cracking (IGSCC) of nickel-base alloys has been investigated through a series of experiments using high-purity alloys and a steam environment to control the formation of NiO on the surface. Five alloys (Ni-9Fe, Ni-5Cr, Ni-5Cr-9Fe, Ni-16Cr-9Fe, and Ni-30Cr-9Fe) were used to investigate oxidation and intergranular cracking behavior for hydrogen-to-water vapor partial pressure ratios (PPRs) between 0.001 and 0.9. The Ni-9Fe, Ni-5Cr, and Ni-5Cr-9Fe alloys formed a uniform Ni(OH)2 film at PPRs less than 0.09, and the higher chromium alloys formed chromium-rich oxide films over the entire PPR range studied. Corrosion coupon results show that grain boundary oxides extended for significant depths (>150 nm) below the sample surface for all but the highest Cr containing alloy. Constant extension rate tensile (CERT) test results showed that intergranular cracking varied with PPR and cracking was more pronounced at a PPR value where nonprotective Ni(OH)2 was able to form and a link between the nonprotective Ni(OH)2 film and the formation of grain boundary oxides is suggested. The observation of grain boundary oxides in stressed and unstressed samples as well as the influence of alloy content on IG cracking and oxidation support SIO as a mechanism for IGSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments, Hillsboro, OR (now PEI).

REFERENCES

  1. W. Bamford and J. Hall: 11th Conf. on Degradation of Materials in Nuclear Power Systems: Water Reactors, American Nuclear Society, 2003, La Grange Park, IL, pp. 1071–81

  2. K. Norring, J. Engstrom, H. Tornblom: 4th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, NACE, Houston, TX, 1989, pp. 12-1–12-10

    Google Scholar 

  3. F.P. Ford: Corrosion, 1996, vol. 52, pp. 375–95

    CAS  Google Scholar 

  4. H.K. Birnbaum, P. Sofronis: Mater. Sci. Eng., A, 1994, vol. 176A, pp. 191–202

    Google Scholar 

  5. T. Magnin, D. Delafosse, B. Bayle, C. Bosch, D. Tanguy: Proc. Int. Conf. on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, TMS, Warrendale, PA, 2003, pp. 563–76

    Google Scholar 

  6. J.R. Galvele: Corr. Sci., 1987, vol. 27, pp. 1–33

    Article  CAS  Google Scholar 

  7. Y. Shen, P. Shewmon: Metall. Trans. A, 1991, vol. 22A, pp. 1857–64

    CAS  Google Scholar 

  8. D.S. Morton, S.A. Attanasio, G.A. Young: 10th Int. Conf. on the Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, NACE, Houston, TX, 2002.

    Google Scholar 

  9. P.M. Scott and P. Combrade: 11th Int. Conf. on the Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, American Nuclear Society, La Grange Park, IL, 2003, pp. 29–38

  10. P.M. Scott, M.L. Calvar: 6th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, TMS, Warrendale, PA, 1993, pp. 657–65

    Google Scholar 

  11. R.B. Rebak, Z. Xia, Z. Szklarska-Smialowska: Corrosion, 1995, vol. 51, pp. 689–97

    CAS  Google Scholar 

  12. G. Economy, R.J. Jacko, F.W. Pement: Corrosion, 1987, vol. 43, pp. 727–34

    CAS  Google Scholar 

  13. P. Kofstad: High Temperature Corrosion, Elsevier Applied Science, London, 1988, pp. 324–41

    Google Scholar 

  14. G.C. Wood, F.H. Stott, D.P. Whittle, Y. Shida, B.D. Bastow: Corr. Sci., 1983, vol. 23, pp. 9–25

    Article  CAS  Google Scholar 

  15. R.W. Staehle, Z.W. Fang: 9th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, TMS, Warrendale, PA, 1999, pp. 69–78

    Google Scholar 

  16. J. Park, C.J. Altstetter: Metall. Trans. A, 1987, vol. 18A, pp. 43–50

    CAS  Google Scholar 

  17. P.M. Scott: 9th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, TMS, Warrendale, PA, 1999, pp. 3–11

    Google Scholar 

  18. A.F. Gourgues, E. Andrieu: Mater. Sci. Eng., A, 2003, vol. 351A, pp. 39–55

    Google Scholar 

  19. T.S. Gendron, S.J. Bushby, R.D. Cleland, R.C. Newman: Corrosion—Deformation Interaction, CDI ‘96, Institute of Metals, London, 1997, pp. 485–95

    Google Scholar 

  20. L.E. Thomas, S.M. Bruemmer: Corrosion, 2000, vol. 55, pp. 572–87

    Google Scholar 

  21. Y.K. Rao: Stoichiometry and Thermodynamics of Metallurgical Processes, Cambridge University Press, New York, NY, 1985, pp. 883–84

    Google Scholar 

  22. P.F. Browning, M.F. Henry, K. Rajan: Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, PA, 1997, pp. 665–78

    Google Scholar 

  23. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall: The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C 1 and C2 Organic Substances in SI Units, National Bureau of Standards, Washington, DC, 1982, pp. 2–166

  24. M. Wohlfahrt-Mehrens, R. Oesten, P. Wilde, R.A. Huggins: Solid State Ionics, 1996, vols. 86–88, pp. 841–47

    Article  Google Scholar 

  25. R.A. Rapp: Corrosion, 1965, vol. 21, pp. 382–401

    CAS  Google Scholar 

  26. C. Soustelle, M. Foucault, P. Combrade: 9th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, TMS, Warrendale, PA, 1999, pp. 105–14

    Google Scholar 

  27. J.H. Kim and I.S. Hwang: 11th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, American Nuclear Society, La Grange Park, IL, 2003, pp. 51–62

  28. S. Yamaura, Y. Igarashi, S. Tsurekawa, T. Watanabe: Acta Mater., 1999, vol. 47, pp. 1163–74

    Article  CAS  Google Scholar 

  29. T.M. Angeliu, D.J. Paraventi, G.S. Was: Corrosion, 1995, vol. 51, pp. 837–48

    Article  CAS  Google Scholar 

  30. B.A. Alexandreanu, B.M. Capell, G.S. Was: Mater. Sci. Eng., A, 2001, vol. 300, pp. 94–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was.

Additional information

Manuscript submitted November 14, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capell, B., Was, G. Selective Internal Oxidation as a Mechanism for Intergranular Stress Corrosion Cracking of Ni-Cr-Fe Alloys. Metall Mater Trans A 38, 1244–1259 (2007). https://doi.org/10.1007/s11661-007-9124-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9124-7

Keywords

Navigation