Skip to main content
Log in

Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from ~600–900 °C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to ~800 °C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800–1000 °C, with post oxidation characterization of the 900 °C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 °C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Sourmail, Materials Science and Technology 17, 1 (2001).

    CAS  Google Scholar 

  2. K. H. Lo, C. H. Shek, and J. K. L. Lai, Materials Science and Engineering R: Reports on ScienceDirect 65, 39 (2009).

    Article  Google Scholar 

  3. P. Kofstad, High Temperature Corrosion, (Elsevier, London, 1988).

    Google Scholar 

  4. Y. Yamamoto, M. P. Brady, Z. P. Lu, P. J. Maziasz, C. T. Liu, B. A. Pint, K. L. More, H. M. Meyer, and E. A. Payzant, Science 316, 433 (2007).

    Article  CAS  Google Scholar 

  5. T. Fujioka, M. Kinugasa, S. Iizumi, S. Teshima, and I. Shimizu (US Patent 3,989,514, Nov 2, 1976).

  6. J. A. McGurty (US Patent 4,086,085, April 25, 1978).

  7. J. C. Pivin, C. Roquescarmes, J. Chaumont, and H. Bernas, Corrosion Science 20, 351 (1980).

    Article  CAS  Google Scholar 

  8. M. P. Brady, Y. Yamamoto, M. L. Santella, P. J. Maziasz, B. A. Pint, and C. T. Liu, Journal of Metals, Minerals, and Materials Society 60, 12 (2008).

    CAS  Google Scholar 

  9. Y. Yamamoto, M.P. Brady, M.L. Santella, H. Bei, P.J. Maziasz, and B.A. Pint, Metallurgical and Materials Transactions A. doi:10.1007/s11661-010-0295-2.

  10. M. P. Brady, Y. Yamamoto, M. L. Santella, and L. R. Walker, Oxidation of Metals 72, 311 (2009).

    Article  CAS  Google Scholar 

  11. V. Ramakrishnan, J. A. McGurty, and N. Jayaraman, Oxidation of Metals 30, 185 (1988).

    Article  CAS  Google Scholar 

  12. B. A. Pint BA, Oxidation of Metals 45, 1 (1996).

    Article  Google Scholar 

  13. S. R. J. Saunders and J. A. Little, in The Role of Active Elements in the Oxidation Behavior of High Temperature Metals and Alloys, ed. E. Lang (Elsevier Applied Science, London, 1989), p. 175.

    Google Scholar 

  14. Y. Murata, M. Nakai, K. Nagai, M. Morinaga, Y. Sasaki, and R. Hashizume, Material Science Forum 522–523, 147 (2006).

    Article  Google Scholar 

  15. K. Nagai, M. Nakai, T. Kunieda, Y. Murata, M. Morinaga, S. Matsuda, and M. Kanno, Material Science Forum 522–523, 197 (2006).

    Article  Google Scholar 

  16. B. A. Pint, R. Peraldi, and P. J. Maziasz, Material Science Forum 461–464, 815 (2004).

    Article  Google Scholar 

  17. B. A. Pint, J. P. Shingledecker, M. P. Brady, and P. J. Maziasz, Proceedings of GT2007 ASME Turbo Expo 2007: Power for Land, Sea, and Air (Montreal, Canada, May 14–17, 2007).

  18. Q. Ma and D. R. Clarke, Journal of the American Ceramic Society 77, 298 (1994).

    Article  CAS  Google Scholar 

  19. B. A. Pint, M. P. Brady, Y. Yamamoto, M. L. Santella, J. Y. Howe, R. Trejo, and P. J. Maziasz, Proceedings of ASME Turbo Expo 5, 271 (2009).

    CAS  Google Scholar 

  20. B. A. Pint, L. R. Walker, and I. G. Wright, Materials at High Temperatures 26, 211 (2009).

    Article  Google Scholar 

  21. S. W. da Silva, F. Nakagomi, M. S. Silva, A. Franco Jr., V. K. Garg, A. C. Oliveira, and P. C. Morais, Journal of Applied Physics 107, 09B503 (2010).

    Article  Google Scholar 

  22. F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 211 (1995).

    Article  CAS  Google Scholar 

  23. D. J. Young and B. Gleeson, Corrosion Science 44, 345 (2002).

    Article  CAS  Google Scholar 

  24. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  25. E. Essuman, G. H. Meier, J. Zurek, M. Hansel, L. Singheiser, and W. J. Quadakkers, Scripta Materialia 57, 845 (2007).

    Article  CAS  Google Scholar 

  26. E. Essuman, G. H. Meier, J. Zurek, M. Hansel, and W. J. Quadakkers, Oxidation of Metals 69, 143 (2008).

    Article  CAS  Google Scholar 

  27. M. Nakai, K. Nagai, Y. Murata, M. Morinaga, S. Matsuda, and M. Kanno, Materials Transactions 46, 69 (2005).

    Article  CAS  Google Scholar 

  28. Z. G. Yang, M. S. Walker, P. Singh, and J. W. Stevenson, Electrochemical and Solid State Letters 6, B35 (2003).

    Article  CAS  Google Scholar 

  29. G. Hultquist, B. Tveten, and E. Hornlund, Oxidation of Metals 54, 1 (2000).

    Article  CAS  Google Scholar 

  30. G. Hultquist, B. Tveten, E. Hornlund, M. Limback, and R. Haugsrud, Oxidation of Metals 56, 313 (2001).

    Article  CAS  Google Scholar 

  31. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1215 (1964).

    Article  CAS  Google Scholar 

  32. W. J. Quadakkers, J. Zurek, and M. Hansel, JOM-Journal of Metals, Minerals, and Materials Society 61, 44 (2009).

    CAS  Google Scholar 

  33. H. Buscail, S. Heinze, Ph. Dufour, and J. P. Larpin, Oxidation of Metals 47, 445 (1997).

    Article  CAS  Google Scholar 

  34. H. Gotlind, F. Liu, J.-E. Svensson, M. Halvarsson, and L.-G. Johansson, Oxidation of Metals 67, 251 (2007).

    Article  Google Scholar 

  35. B. A. Pint, J. A. Haynes, Y. Zhang, K. L. More, and I. G. Wright, Surface and Coatings Technology 201, 3852 (2006).

    Article  CAS  Google Scholar 

  36. R. Janakiraman, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 30, 2905 (1999).

    Article  Google Scholar 

  37. J. L. Smialek, Electrochimica Acta. doi:10.1016/j.electacta.2010.09.072.

  38. M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical and Materials Transactions A 34A, 2609 (2003).

    Article  CAS  Google Scholar 

  39. K. Onal, M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Materials at High Temperatures 20, 327 (2003).

    Article  CAS  Google Scholar 

  40. S. R. J. Saunder, M. Monteiro, and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  Google Scholar 

  41. J. Takahashi, K. Kawakami, Y. Kobayashia, and T. Toshimi, Scripta Materialia 63, 261 (2010).

    Article  CAS  Google Scholar 

  42. M. P. Brady, M. Fayek, J. R. Keiser, H. M. Meyer III, K. L. More, L. M. Anovitz, D. J. Wesolowski, and D. R. Cole, Corrosion Science (in press).

Download references

Acknowledgements

The authors thank B.A. Pint for providing comparative FeCrAlY material, suggestions regarding the addition of high levels of B, and for helpful comments on this manuscript. The authors also thank S. Dryepondt and Govindarajan Muralidharan for helpful comments in reviewing this manuscript and Dorothy Coffey for the FIB sample preparation. Funding from the U.S. Department of Energy’s Energy Efficiency and Renewable Energy Industrial Technologies Program and collaboration with the SHaRE User Facility at ORNL is also acknowledged. ORNL is managed by UT-Battelle, LLC for the US DOE under contractDE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Brady.

Additional information

Notice: This submission was sponsored by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, M.P., Unocic, K.A., Lance, M.J. et al. Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor. Oxid Met 75, 337–357 (2011). https://doi.org/10.1007/s11085-011-9237-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-011-9237-7

Keywords

Navigation