Skip to main content
Log in

Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The addition of reactive elements can have a significant effect on the oxidation behavior of alumina- and chromia-forming alloys. A model has been developed to explain the effects associated with the addition of reactive elements that is based on the segregation of reactive-element ions to scale grain boundaries and the metal-oxide interface. Reactive-element ions use these interaces as pathways for diffusion from the metal substrate to the gas interface of the scale. The driving force for this outward diffusion is the oxygen potential gradient across the scale. Doping of the scale grain boundaries results in scale growth primarily by inward oxygen diffusion, while doping at the metal-oxide interface slows the growth of interfacial voids and thus improves scale adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. B. Pfeil, U.K. Patent no. 459848 (1937); U.K. Patent No. 574088 (1945).

  2. D. P. Whittle and J. Stringer,Phil. Trans. R. Soc. London A 295, 309 (1980).

    Google Scholar 

  3. J. Stringer,Mater. Sci. Eng. A 120, 129 (1989).

    Google Scholar 

  4. E. Lang (ed.),The Role of Active Elements in the Oxidation, Behavior of High Temperature Metals and Alloys (Elsevier Applied Science, London, 1989).

    Google Scholar 

  5. W. E. King (ed.),The Reactive Element Effect on High Temperature Oxidation—After Fifty Years, Materials Science Forum43 (Trans Tech Publ., Switzerland, 1989).

    Google Scholar 

  6. D. P. Moon,Mater. Sci. Techol. 5, 75 (1989).

    Google Scholar 

  7. R. Prescott and M. J. Graham,Oxid. Met. 38, 233 (1992).

    Google Scholar 

  8. Y.-K. Kim, K. Przybylski and G. J. Yurek, inFundamental Aspects of High Temp. Corr.-II, D. Shores and G. J. Yurek, eds. (Electrochemical Society Inc., Pennington, NJ, 1986, pp. 259–281.

    Google Scholar 

  9. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell and M. J. Graham,J. Electrochem. Soc. 134, 1871 (1987).

    Google Scholar 

  10. G. S. Yurek, K. Przybylski and A. J. Garratt-Reed,J. Electochem. Soc. 134, 2643 (1987).

    Google Scholar 

  11. E. P. Katz, B. A. Pint, A. J. Garratt-Reed and G. J. Yurek, unpublished research, (1987).

  12. C. M. Cotell, Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, MA, 1988).

  13. K. Przybylski, A. J. Garratt-Reed and G. J. Yurek,J. Electrochem. Soc. 135, 509 (1988).

    Google Scholar 

  14. K. Przybylski and G. J. Yurek,J. Electrochem. Soc. 135, 517 (1988).

    Google Scholar 

  15. K. Przybylski and G. J. Yurek, in Ref. 5,, pp. 1–74.

    Google Scholar 

  16. B. A. Pint, A. J. Garratt-Reed and G. J. Yurek, unpublished research, 1989.

  17. C. M. Cotell, G. J. Yurek, R. J. Hussey, D. F. Mitchell and M. J. Graham,Oxid. Met. 34, 173–200, 201–216 (1990).

    Google Scholar 

  18. Y. Ikeda, K. Nii and K. Yoshihara,Trans. Jpn. Inst. Met. 24, 207 (1983).

    Google Scholar 

  19. A. W. Funkenbush, J. G. Smeggil and N. S. Bornstein,Met. Trans. 16A, 1164 (1985).

    Google Scholar 

  20. J. G. Smeggil, E. L. Paradis, A. J. Shuskus and N. S. Bornstein,J. Vaccum Sci. Technol. A 3, 2569 (1985).

    Google Scholar 

  21. J. G. Smeggil, A. W. Funkenbusch and N. S. Bornstein,Met. Trans. 17A, 923 (1986).

    Google Scholar 

  22. J. L. Smialek,Met. Trans. 18A, 164 (1987).

    Google Scholar 

  23. J. L. Smialek, inHigh Temperature Materials Chemistry IV, Proc. v.88-5, Z. Munir et al. eds. (Electrochemical Society Inc., Pennington, NJ, 1988), pp. 241–247.

    Google Scholar 

  24. D. R. Sigler,Oxid. Met. 32, 337 (1989).

    Google Scholar 

  25. J. L. Smialek,Met. Trans. 22A, 739 (1991).

    Google Scholar 

  26. P. Y. Hou and J. Stringer,Oxid. Met. 38, 323 (1992).

    Google Scholar 

  27. K. P. R. Reddy, J. L. Smialek and A. R. Cooper,Oxid. Met. 17, 429 (1982).

    Google Scholar 

  28. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs and H. Beske,Oxid. Met. 32, 67 (1989).

    Google Scholar 

  29. D. A. Downham, R. J. Hussey, D. F. Mitchell and M. J. Graham, inHigh Temperature Oxidation and Sulfidation Processes, W. Embury, (ed.) (CIM, Ottawa, Ont., 1990), pp. 101–112.

    Google Scholar 

  30. H. Nickel and W. J. Quadakkers, inHeat Resistant Materials, K. Natesan and D. J. Tillack, eds. (ASM, Materials Park, OH, 1991), pp. 87–94.

    Google Scholar 

  31. W. J. Quadakkers, A. Elschner, W. Speier and H. Nickel,Appl. Surf. Sci. 52, 271 (1991).

    Google Scholar 

  32. R. Prescott, D. F. Mitchell, G. I. Sproule and M. J. Graham,Solid State Ionics 53–56, 229 (1992).

    Google Scholar 

  33. D. G. Lees and D. Johnson,Oxid. Met. 38, 217 (1992).

    Google Scholar 

  34. D. Clemens, K. Bongartz, W. Speier, R. J. Hussey and W. J. Quadakkers,Fresenius' J. Anal. Chem. 346, 318 (1993).

    Google Scholar 

  35. R. A. Versaci, D. Clemens, W. J. Quadakkers and R. Hussey,Solid State Ionics 59, 235 (1993).

    Google Scholar 

  36. B. A. Pint, J. R. Martin and L. W. Hobbs,Oxid. Met. 39, 167 (1993).

    Google Scholar 

  37. B. A. Pint, J. R. Martin and L. W. Hobbs,Solid State Ionics,78, 99–107 (1995).

    Google Scholar 

  38. T. A. Ramanarayanan, M. Raghavan and R. Petkovic-Luton,J. Electrochem. Soc. 131, 923 (1984).

    Google Scholar 

  39. K. Przybylski, A. J. Garratt-Reed, B. A. Pint, E. P. Katz and G. J. Yurek,J. Electrochem. Soc. 134, 3207 (1987).

    Google Scholar 

  40. M. J. Bennett and A. T. Tuson,Mater. Sci. Eng. A116, 79 (1989).

    Google Scholar 

  41. N. Patibandla, T. A. Ramanarananan and F. Cosandey,J. Electrochem. Soc. 138, 2176 (1991).

    Google Scholar 

  42. C. M. Cotell, M. J. Bennett and A. J. Garratt-Reed, inStructure and Properties of Interfaces in Materials, Symp. Proc. v.238, W. A. T. Clark et al., eds. (MRS, Pittsburgh, PA, 1992). pp. 439–444.

    Google Scholar 

  43. B. A. Pint, Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, MA, 1992).

  44. H. M. Tawancy and N. Sridhar,Oxid. Met. 37, 143 (1992).

    Google Scholar 

  45. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs,J. Phys. IV 3, C9–247 (1993).

    Google Scholar 

  46. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs, inProc. 51st Ann. Meeting Microscopy Society of America, G. W. Bailey and C. L. Reider, eds. (San Franscisco Press, San Francisco, CA, 1993), pp. 950–951.

    Google Scholar 

  47. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs, inMicrocopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, UK, 1993), pp. 423–434.

    Google Scholar 

  48. B. A. Pint and L. W. Hobbs, inOxide Films on Metals and Alloys, B. R. MacDougall et al., eds., Proc. Vol. 92-22 (Electrochemical Society Inc., Pennington, NJ, 1992), pp. 92–100.

    Google Scholar 

  49. E. Schumann, J. C. Yang and M. Ruhle, inHigh Temperature Ordered Intermetallics VI, Symp. Proc. v.364, J. Horton, S. Hanada, I. Baker, R. D. Noebe, and D. Schwartz, eds. (MRS, Pittsburgh, PA, 1995), pp. 1291–1296.

    Google Scholar 

  50. K. Y. Kim, S. H. Kim, K. W. Kwon and, I. H. Kim,Oxid. Met. 41, 179 (1994)

    Google Scholar 

  51. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett,. eds. (Institute of Metals, London, UK, 1993), pp. 463–475.

    Google Scholar 

  52. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs,Electrochem. Soc. Extend. Abstracts 92-2, 678 (1993).

    Google Scholar 

  53. B. A. Pint and L. W. Hobbs,Oxid. Met. 41, 203–33 (1994).

    Google Scholar 

  54. B. A. Pint and L. W. Hobbs,J. Electrochem. Soc. 141, 2443 (1994).

    Google Scholar 

  55. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs,Mater. High Temp. 13, 3 (1995).

    Google Scholar 

  56. B. A. Pint, A. J. Garratt-Reed and L. W. Hobbs,J. Amer. Cer. Soc., submitted.

  57. W. J. Quadakkers, K. Schmidt, H. Grubmeier and E. Wallura,Mater. High Temp. 10, 23 (1992).

    Google Scholar 

  58. B. A. Pint and L. W. Hobbs,Electrochem. Soc. Ext. Abstracts 93-1, 1707 (1993).

    Google Scholar 

  59. J. D. Kuenzly and D. L. Douglass, Oxid. Met.8, 139 (1974).

    Google Scholar 

  60. J. Jedlinski,Oxid. Met. 39, 61 (1993).

    Google Scholar 

  61. P. A. van Manen, E. W. A. Young, D. Schalkoord, C. J. van der Wekken and J. H. W. de Wit,Surf. Interface Anal. 12, 391 (1987).

    Google Scholar 

  62. B. A. Pint, A. Jain and L. W. Hobbs, inHigh Temperature Ordered Intermetallics IV, Symp. Proc. v.213, L. A. Johnson, D. P. Pope and J. O. Steigler, eds. (MRS, Pittsburgh, PA, 1991), pp. 981–986.

    Google Scholar 

  63. B. A. Pint, A. Jain and L. W. Hobbs, inHigh Temperature Ordered Intermetallics V, Symp. Proc. v.288, I. Baker, R. Darolia, J. D. Whittenberger, and M. H. Yoo, eds. (MRS, Pittsburgh, PA, 1993), pp. 1013–1018.

    Google Scholar 

  64. J. Doychak, J. L. Smialek and C. A. Barrett, inOxidation of High Temperature Intermetallics, T. Grobstein and J. Doychak, eds. (TMS, Warrendale, PA, 1988), pp. 41–55.

    Google Scholar 

  65. C. S. Wukusick and J. F. Collins,Mater. Res. Stand. 4, 637 (1964).

    Google Scholar 

  66. H. M. Hindam and W. W. Smeltzer,Oxid. Met. 14, 337 (1980).

    Google Scholar 

  67. T. T. Huang, R. Richter, Y. L. Chang and E. Pfender,Met. Trans. 16A, 2051 (1985).

    Google Scholar 

  68. B. A. Pint and L. W. Hobbs, inHigh Temperature Ordered Intermetallics VI, Symp. Proc. v. 364, J. Horton, S. Hanada, I. Baker, R. D. Noebe, and D. Schwartz, eds. (MRS, Pittsburgh, PA, 1995), pp. 987–992.

    Google Scholar 

  69. B. A. Pint and L. W. Hobbs,Electrochem. Soc. Extend. Abstracts 93-2, 676 (1993).

    Google Scholar 

  70. M. J. Bennett, H. Romary and J. B. Price, inHeat Resistant Meterials, K. Natesan and D. J. Tillack, eds. (ASM, Materials Park, OH, 1991), pp. 95–103.

    Google Scholar 

  71. E. Schumann, J. C. Yang, K. Nadarzinski and M. Ruhle, inProc. 52nd Annual Meeting Microscopy Society of America, W. Bailey and Reider, eds. (San Franciso Press, San Francisco, CA, 1994), pp. 672–673.

    Google Scholar 

  72. P. Nanni, C. T. H. Stoddart and E. D. Hondros,Mater. Chem. 1, 297 (1976).

    Google Scholar 

  73. T. Mitamura, E. L. Hall, W. D. Kingery and J. B. Vander Sande,Ceram. Int. 5, 131 (1979).

    Google Scholar 

  74. Y. M. Chiang, A. F. Henriksen, W. D. Kingery and D. Finello,J. Am. Ceram. Soc. 64 385 (1981).

    Google Scholar 

  75. C. W. Li and W. D. Kingery, inStructure and Properties of MgO and Al 2O3 Ceramics, Advances in Ceramics v.10 (American Ceramic Society, Columbus, OH, 1984), pp. 368–378.

    Google Scholar 

  76. W. D. Kingery,Solid State Ionics 12, 299 (1984).

    Google Scholar 

  77. R. F. Cook and A. G. Schrott,J. Am. Ceram. Soc. 71, 50 (1988).

    Google Scholar 

  78. J. Ikeda, Y. Chiang and C. Madras, inPoint Defects and Related Properties of Ceramics, T. O. Mason and J. L. Routbort, eds. (American Ceramic Society Inc., Westerville, OH, 1991), pp. 341–348.

    Google Scholar 

  79. T. A. Ramanarayanan and R. Petkovic-Luton,Ber. Bunsen-Gesell. Phys. Chem. 89, 402 (1985).

    Google Scholar 

  80. T. A. Ramanaryanan, R. Ayer, R. Petkovic-Luton and D. P. Leta,Oxid. Met. 29, 445 (1988).

    Google Scholar 

  81. M. F. Yan, R. M. Cannon, H. K. Bowen and R. L. Coble,J. Am. Ceram. Soc. 60, 120 (1977).

    Google Scholar 

  82. W. D. Kingery,J. Am. Ceram. Soc. 57, (1974).

  83. J. S. Sheasby and D. B. Jory,Oxidation of Metals 12, 527 (1977).

    Google Scholar 

  84. A. M. Huntz, G. Moulin and B. Lesage, inProc. 9th Int. Congr. Metallic Corrosion, Vol. 2 (National Research Council of Canada, Ottawa, Canada, 1984), pp. 400–405.

    Google Scholar 

  85. D. Nicolas-Chaubet, A. M. Huntz and F. Millot,Colloq. Phys. 51, 1015 (1990).

    Google Scholar 

  86. P. Gas and J. Bernardini,Surf. Sci. 72, 365 (1978).

    Google Scholar 

  87. T. Rosso and C. Sabatini,Scripta Metall. 6, 51 (1972).

    Google Scholar 

  88. W. C. Hagel and A. U. Seybolt,Electrochem. Soc. 108, 1146 (1961).

    Google Scholar 

  89. A. A. Moosa, S. J. Rothman and L. J. Nowicki.,Oxid. Met. 24, 115 (1985).

    Google Scholar 

  90. J. H. Park, W. E. King and S. J. Rothman,J. Am. Ceram. Soc. 70, 880 (1987).

    Google Scholar 

  91. J. Philibert and A. M. Huntz, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, UK, 1993), pp. 253–268.

    Google Scholar 

  92. R. D. Bagley, I. B. Cutler and D. L. Johnson,J. Am. Ceram. Soc. 53, 136 (1970).

    Google Scholar 

  93. G. W. Hollenberg and R. S. Gordon,J. Am. Ceram. Soc. 56, 140 (1973).

    Google Scholar 

  94. Y. Ikuma and R. S. Gordon,J. Mater. Sci. 17, 2961 (1982).

    Google Scholar 

  95. M. K. Loudjani, J. Roy, A. M. Huntz and R. Cortes,J. Am. Ceram. Soc. 68, 559 (1985).

    Google Scholar 

  96. H. A. Wang and F. A. Kroger,J. Am. Ceram. Soc. 63, 613 (1980).

    Google Scholar 

  97. H. S. Hsu, inOxidation of Metals and Associated, Mass Transport, M. A. Dayananda, S. J. Rothman and W. E. King, eds. (TMS, Warrendale, PA, 1987), pp. 281–296.

    Google Scholar 

  98. K. Smidoda, C. Gottschalk and H. Gleiter,Met. Sci. 13, 146 (1979).

    Google Scholar 

  99. J. Smialek,J. Electrochem. Soc. 126, 2275 (1979).

    Google Scholar 

  100. Y. Saito, T. Maruyama and T. Amano,Mater. Sci. Eng. 87, 275 (1987).

    Google Scholar 

  101. H. T. Michels,Met. Trans. 7A, 379 (1976).

    Google Scholar 

  102. E. W. A. Young and J. H. W. de Wit, inProc. 9th Int. Congr. Metallic Corrosion, vol. 4 (National Research Council, Ottawa, Canada, 1984), pp. 50–53.

    Google Scholar 

  103. J. D. Cawley and J. W. Halloran,J. Am. Ceram. Soc. 69, C195 (1986).

    Google Scholar 

  104. H. Nagai, in Ref. 5,, pp. 75–130.

    Google Scholar 

  105. H. Nagai, T. Fujikawa and K. Shoji,Trans. Jpn. Inst. Met. 26, 581 (1983).

    Google Scholar 

  106. H. Nagai, S. Ishikawa and K. Shoji,Trans. Jpn. Inst. Met.,26, 44 (1985).

    Google Scholar 

  107. H. Nagai, S. Ishikawa, N. Amano and K. Shoji,Trans. Jpn. Inst. Met. 26, 753 (1985).

    Google Scholar 

  108. R. A. Collins, S. Muhl and G. Dearnaley,J. Phys. F: Met. Phys. 9, 1245 (1979).

    Google Scholar 

  109. A. Strawbridge and R. A. Rapp,J. Electrochem. Sco. 141, 1405 (1994).

    Google Scholar 

  110. H. Nagai, Y. Takebayashi and H. Mitani,Met. Trans. 12A, 435 (1981).

    Google Scholar 

  111. B. A. Pint,Oxid. Met. submitted.

  112. G. M. Ecer, R. B. Singh and G. H. Meier,Oxid. Met 18, 55 (1982).

    Google Scholar 

  113. K. L. Luthra and E. L. Hall,Oxid. Met 26, 385 (1986).

    Google Scholar 

  114. M. J. Bennett, B. A. Bellamy, G. Dearnaley and M. R. Houlton, inProc. 9th Int. Congr. Metallic Corrosion, vol. 2 (National Research, Council, Ottawa, Canada, 1984), pp. 416–423.

    Google Scholar 

  115. F. H. Stott, J. S. Punni, G. C. Wood and G. Deanaley, inTransport in Non-Stoichiometric Compounds, G. Simkovich and V. S. Stubican, eds., NATO ASI Series B, v. 129 (Plenum Press, New York, 1985), pp. 463–479.

    Google Scholar 

  116. J. K. Tien and F. S. Pettit,Met. Trans. 3, 1587 (1972).

    Google Scholar 

  117. C. A. Barrett,Oxid. Met. 30, 361 (1988).

    Google Scholar 

  118. M. H. Lagrange, A. M. Huntz and J. H. Davidson,Corros. Sci. 24, 613 (1984).

    Google Scholar 

  119. B. A. Pint,Electrochem. Soc. Extend. Abstracts 94-2, 835 (1994).

    Google Scholar 

  120. T. Biegun, M. Danielewski and Z. Skrzypek,Oxid. Met. 38, 207 (1992).

    Google Scholar 

  121. B. A. Pint,Mater. Res. Soc. Bull. 19(10), 26 (1994).

    Google Scholar 

  122. P. Beatrice and W. L. Worrell,Electrochem. Soc. Extend. Abstracts 93-2, 678 (1993).

    Google Scholar 

  123. M. J. Graham, D. F. Mitchell, R. Prescott and J. Doychak,Electrochem. Soc. Extend. Abstracts 94-2, 837 (1994);Corros. Sci. submitted.

    Google Scholar 

  124. A. M. Huntz, in Ref. 4,, pp. 81–109.

    Google Scholar 

  125. G. J. Yurek, inCorrosion Mechanisms, F. Mansfield, ed. (Marcell Dekker, New York, 1987), pp. 397–446.

    Google Scholar 

  126. A. S. Nagelberg and R. W. Bradshaw,Electrochem. Soc. 128, 2655 (1981).

    Google Scholar 

  127. H. Schmalzried and W. Laqua,Oxid. Met. 15, 339 (1981).

    Google Scholar 

  128. S. A. Akbar and H. Sato, inOxidation of Metals and Associated Mass Transport, M. A. Dayananda, S. J. Rothman, and W. E. King, eds. (TMS, Warrendale, PA, 1987), pp. 49–65.

    Google Scholar 

  129. B. A. Pint and K. B. Alexander, manuscript in progress.

  130. J. Stringer, B. A. Wilcox and R. I. Jaffee,Oxid. Met. 5, 11 (1972).

    Google Scholar 

  131. W. D. Kingery, H. K. Bowen and D. R. Uhlmann,Introduction to Ceramics (Wiley, New York, 1976), p. 457.

    Google Scholar 

  132. J. E. Antill and K. A. Peakall,J. Iron Steel Inst. 205, 1136 (1967).

    Google Scholar 

  133. A. Bennett,Mater. Sci. Technol. 2, 257 (1986).

    Google Scholar 

  134. B. A. Pint, D. Clemens and L. W. Hobbs, unpublished research.

  135. F. A. Golightly, F. H. Stott and G. C. Wood,J. Electrochem. Soc. 126, 1035 (1979).

    Google Scholar 

  136. H. M. Hindam and W. W. Smeltzer,J. Electrochem. Soc. 127, 1630 (1980).

    Google Scholar 

  137. D. G. Lees,Oxid. Met. 27, 75 (1987).

    Google Scholar 

  138. J. Stringer,Metall. Rev. 11, 113 (1966).

    Google Scholar 

  139. P. Fox, D. G. Lees and G. W. Lorimer,Oxid. Met. 36, 491 (1991).

    Google Scholar 

  140. P. Y. Hou and J. Stringer, inAdhesion in Solids, Symp. Proc. v. 119, D. M. Mattox, J. E. E. Baglin, R. J. Gottschall, and C. D. Batich, eds. (MRS, Pittsburgh, PA, 1988), pp. 205–222.

    Google Scholar 

  141. P. Y. Hou, I. G. Brown and J. Stringer,Nucl. Instrum. Meth. B 59/60, 1345 (1991).

    Google Scholar 

  142. B. Pieraggi and R. A. Rapp,J. Electrochem. Soc. 140, 2844 (1993).

    Google Scholar 

  143. J. Stringer and I. G. Wright,Oxid. Met. 5, 59, (1972).

    Google Scholar 

  144. F. A. Golightly, F. H. Stott and G. C. Wood,Oxid. Met. 10, 163 (1976).

    Google Scholar 

  145. S. Mrowec, A. Gil and J. Jedlinski,Werks. Korros. 38, 563 (1987).

    Google Scholar 

  146. J. Jedlinski and S. Mrowec,Mater. Sci. Eng. 87, 281 (1987).

    Google Scholar 

  147. A. U. Seybolt,Corros. Sci. 6, 263 (1966).

    Google Scholar 

  148. D. Ting and W. Longmei,J. Less Common Met. 110, 179 (1985).

    Google Scholar 

  149. C. L. Briant and K. L. Luthra,Met. Trans. 19A, 2099 (1988).

    Google Scholar 

  150. H. J. Grabke, D. Weimer and H. Viefhaus,Appl. Surf. Sci. 47, 243 (1991).

    Google Scholar 

  151. D. T. Jayne and J. L. Smialek, inMicroscopy, of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, U.K., 1993), pp. 183–196.

    Google Scholar 

  152. M. Bobeth, W. Pompe and M. Rockstroh, inMicroscopy of Oxidation 2, S. B. Newcomb and M. J. Bennett, eds. (Institute of Metals, London, UK, 1993), pp. 412–422.

    Google Scholar 

  153. G. J. Yurek, D. Eisen and A. Garratt-Reed,Met. Trans. 13A, 473 (1982).

    Google Scholar 

  154. M. J. Bennett, B. A. Bellamy, C. F. Knights, N. Meadows and N. J. Eyre,Mater. Sci. Eng. 69, 359, (1985).

    Google Scholar 

  155. C. S. Giggins and F. S. Pettit,Met. Trans. 2, 1071 (1971).

    Google Scholar 

  156. O. T. Goncel, D. P. Whittle and J. Stringer,Oxid. Met. 15, (1981) 287.

    Google Scholar 

  157. J. G. Goedjen and D. A. Shores,Oxid. Met.,37, 125 (1992).

    Google Scholar 

  158. P. Y. Hou and J. Stringer,J. Electrochem. Soc. 134, 1836 (1987).

    Google Scholar 

  159. P. Y. Hou and J. Stringer,Mater. Sci. Eng. 87, 295 (1987).

    Google Scholar 

  160. P. Hou and J. Stringer,Oxid., Met. 29, 45 (1988).

    Google Scholar 

  161. B. A. Pint and J. L. Smialek, unpublished research.

  162. I. G. Wright, B. A. Wilcox and R. I. Jaffe,Oxid. Met. 9, 275 (1975).

    Google Scholar 

  163. L. M. Kingsley and J. Stringer,Oxid. Met. 32, 371 (1989).

    Google Scholar 

  164. A. Atkinson, inOxidation of Metals and Associated Mass Transport, M. A. Dayananda, S. J. Rothman and W. E. King, eds. (TMS, Warrendale, PA, 1987), pp. 29–47.

    Google Scholar 

  165. G. C. Wood and J. Boustead,Corros. Sci. 8, 719 (1968).

    Google Scholar 

  166. V. Provenzano, K. Sadananda, N. P. Louat and J. R. Reed,Surf. Coat. Technol. 36, 61 (1988).

    Google Scholar 

  167. H. M. Hindam and D. P. Whittle,Oxid. Met. 18, 245 (1982).

    Google Scholar 

  168. A. B. Anderson, S. P. Mehandru and J. L. Smialek,J. Electrochem. Soc. 132, 1695 (1985).

    Google Scholar 

  169. J. Smialek and R. Gibala, inHigh Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, 1983), pp. 274–283.

    Google Scholar 

  170. P. Choquet and R. Mevrel,Mater. Sci. Eng. A120, 153 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid Met 45, 1–37 (1996). https://doi.org/10.1007/BF01046818

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046818

Key Words

Navigation