Skip to main content
Log in

Water-vapor-effect on the oxidation of Fe-21.5 wt.%Cr-5.6 wt.%Al at 1000°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Fe-21.5 wt. %Cr-5.6 wt. %Al oxidation, at 1000°C, in dry or wet oxygen shows that steam has an influence on the oxide-scale growth mechanism. Steam modifies the kinetics of early-stage oxidation. In dry oxygen, an initial fast linear regime is observed during one hour. Under wet conditions, weight-gain curves follow the same parabolic regime over the entire oxidation test. The scale structure strongly depends on the presence of steam in the gaseous environment. With dry oxygen, the scale is composed mainly ofα-Al2O3 after the initial formation ofγ-Al2O3 identified by ESCA and RHEED. The kinetics transient stage corresponds to the necessary time for the internal part of the initialγ-Al2O3 scale to transform into a continuousα-Al2O3 diffusion barrier. Under wet oxygen conditions, transient oxides are identified as (Mg, Fe) (Cr, Al)2O4, MgAl2O4 (orthorhombic), Al2O3 (hexagonal), these oxides transform into MgAl2O4 (cubic), Cr3O4, Fe2O3,α-Al2O3, with time. When water vapor does not change drastically oxidation kinetics, the induced presence of iron and chromium in the oxide scale could be responsible for weakening the protectiveness of alumina scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Maskaoui, Thesis, Université de Bourgogne, 1981.

  2. P. A. Mari, Thesis, Université de Bourgogne, 1981.

  3. F. A. Golightly, G. C. Wood, and F. H. Stott,Oxid. Met. 14, 3, 217 (1980).

    Google Scholar 

  4. G. B. Abderrazik,Met. Corros. Ind. 62, 743, 235 (1987).

    Google Scholar 

  5. G. B. Abderrazik, G. Moulin, A. M. Huntz, E. W. A. Young, and J. H. W. d. Wit,Solid State Ionics 22, 285 (1987).

    Google Scholar 

  6. Z. E. Majid and M. Lambertin,J. Chim. Phys. 82. 1, 67 (1985).

    Google Scholar 

  7. I. Kvernes, M. Oliveira, and P. Kofstad,Corros. Sci. 17, 237 (1977).

    Google Scholar 

  8. R. G. Miner, V. Nagarajan,Oxid. Met. 16, 3/4, 313 (1981).

    Google Scholar 

  9. B. Dionnet, F. Clemendot, and F. Nardou,J. Phys. IV C9, 3, 963 (1993).

    Google Scholar 

  10. B. A. Pint, J. R. Martin, and L. W. Hobbs,Oxid. Met. 39, 3/4, 167 (1993).

    Google Scholar 

  11. H. J. Schmutzler and H. J. Grabke,Oxid. Met. 39, 1/2, 15 (1993).

    Google Scholar 

  12. P. Y. Hou, Z. R. Shui, and G. Y. Chuang,J. Electrochem. Soc. 139, 4, 1119 (1992).

    Google Scholar 

  13. M. Boualam, Thesis, Université Technologique de Compiègne, 1992.

  14. J. K. R. Weber and M. G. Hocking,Oxid. Met. 32, 1/2, 1 (1989).

    Google Scholar 

  15. M. W. Roberts and P. R. Wood,J. Elec. Spect. 11, 4, 431 (1977).

    Google Scholar 

  16. Q. Lu,Oxid. Met. 39, 421 (1993).]

    Google Scholar 

  17. V. Stambouli, C. Palacio, H. J. Mathieu, and D. Landolt,Appl. Surf. Sci. 70/71, 240 (1993).

    Google Scholar 

  18. C. Palacio, H. J. Mathieu, V. Stambouli, and D. Landolt,Surf. Sci. 295, 251 (1993).

    Google Scholar 

  19. G. Hultquist, L. Grasjö, and Q. Lu,Corros. Sci. 34, 6, 1035 (1993).

    Google Scholar 

  20. A. Errkik, Thesis, Université Technologique de Compiègne, 1995.

  21. Z. Zurek,Solid State Penomena,41, 185 (1995).

    Google Scholar 

  22. V. I. Tikhomirov, V. V. Ipatev, and I. A. Hofman,Dokl. Akad. Nauk. URSS,95, 305 (1954).

    Google Scholar 

  23. W. E. Boggs,J. Electrochem. Soc. 118, 6, 906 (1971).

    Google Scholar 

  24. T. Ohhashi, N. Tsuno, and T. Harada, European. Patent Application. Publication number: E.P.0 510 950 Al, (1992).

  25. Q. Lu, G. Hultquist, and T. Åkermark, 12th Scand. Corros. Congress 581 (1992).

  26. J. Baud, A. Ferrier, J. Manenc, and J. Bénard,Oxid. Met. 9, 1, 96 (1975).

    Google Scholar 

  27. A. Rahmel and J. Tobolski,Corrosion Science 5, 333 (1965).

    Google Scholar 

  28. K. Shimizu, R. C. Furneaux, G. E. Thompson, G. C. Wood, A. Gotoh, and K. Kobayashi,Oxid. Met. 35, 5/6, 427 (1991).

    Google Scholar 

  29. R. Prescott and M. J. Graham,Oxid. Met. 38, 1/2, 73 (1992).

    Google Scholar 

  30. F. Bernard, Thesis, Université de Bourgogne, 1993.

  31. E. Schumann,Oxid. Met. 43, 1/2, 157 (1995).

    Google Scholar 

  32. J. Jedlinski,Oxid. Met. 39, 1/2, 55 (1993).

    Google Scholar 

  33. Y. Saito, B. Önay, and T. Maruyama,J. de Phys. IV,C9, 3, 217, (1993).

    Google Scholar 

  34. W. Wegener and G. Borchardt,Oxid. Met. 36, 3/4, 339 (1991).

    Google Scholar 

  35. P. Kofstad, A. Rahmel, R. A. Rapp, and D. L. Douglass,Oxid. Met. 32, 1/2, 125 (1989).

    Google Scholar 

  36. R. H. Chang and J. B. Wagner Jr.,J. Am. Ceram. Soc. 55, 211 (1972).

    Google Scholar 

  37. A. Baranski, A. Kotarba, and A. Reizer,Solid State Phenomena 41, 49 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscail, H., Heinze, S., Dufour, P. et al. Water-vapor-effect on the oxidation of Fe-21.5 wt.%Cr-5.6 wt.%Al at 1000°C. Oxid Met 47, 445–464 (1997). https://doi.org/10.1007/BF02134786

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02134786

Key Words

Navigation