Skip to main content

Advertisement

Log in

Role of the Astrocytic Na+, K+-ATPase in K+ Homeostasis in Brain: K+ Uptake, Signaling Pathways and Substrate Utilization

  • Review Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This paper describes the roles of the astrocytic Na+, K+-ATPase for K+ homeostasis in brain. After neuronal excitation it alone mediates initial cellular re-accumulation of moderately increased extracellular K+. At higher K+ concentrations it is assisted by the Na+, K+, 2Cl transporter NKCC1, which is Na+, K+-ATPase-dependent, since it is driven by Na+, K+-ATPase-created ion gradients. Besides stimulation by high K+, NKCC1 is activated by extracellular hypertonicity. Intense excitation is followed by extracellular K+ undershoot which is decreased by furosemide, an NKCC1 inhibitor. The powerful astrocytic Na+, K+-ATPase accumulates excess extracellular K+, since it is stimulated by above-normal extracellular K+ concentrations. Subsequently K+ is released via Kir4.1 channels (with no concomitant Na+ transport) for re-uptake by the neuronal Na+, K+-ATPase which is in-sensitive to increased extracellular K+, but stimulated by intracellular Na+ increase. Operation of the astrocytic Na+, K+-ATPase depends upon Na+, K+-ATPase/ouabain-mediated signaling and K+-stimulated glycogenolysis, needed in these non-excitable cells for passive uptake of extracellular Na+, co-stimulating the intracellular Na+-sensitive site. A gradual, spatially dispersed release of astrocytically accumulated K+ will therefore not re-activate the astrocytic Na+, K+-ATPase. The extracellular K+ undershoot is probably due to extracellular hypertonicity, created by a 3:2 ratio between Na+, K+-ATPase-mediated Na+ efflux and K+ influx and subsequent NKCC1-mediated volume regulation. The astrocytic Na+, K+-ATPase is also stimulated by β1-adrenergic signaling, which further stimulates hypertonicity-activation of NKCC1. Brain ischemia leads to massive extracellular K+ increase and Ca2+ decrease. A requirement of Na+, K+-ATPase signaling for extracellular Ca2+ makes K+ uptake (and brain edema) selectively dependent upon β1-adrenergic signaling and inhibitable by its antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  2. Skou JC (2004) The identification of the sodium pump. Biosci Rep 24:436–451

    Article  PubMed  Google Scholar 

  3. Henn FA, Haljamäe H, Hamberger A (1972) Glial cell function: active control of extracellular K+ concentration. Brain Res 43:437–443

    Article  CAS  PubMed  Google Scholar 

  4. Grisar T, Frere JM, Franck G (1979) Effect of K+ ions on kinetic properties of the Na+, K+-ATPase (EC 3.6.1.3) of bulk isolated glial cells, perikarya and synaptosomes from rabbit brain cortex. Brain Res 165:87–103

    Article  CAS  PubMed  Google Scholar 

  5. Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28:335–342

    Article  CAS  PubMed  Google Scholar 

  6. Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose C, Peng L (2014) Roles of astrocytic Na+, K+-ATPase and glycogenolysis for K+ homeostasis in mammalian brain. J Neurosci Res. doi:10.1002/jnr.23499

  7. Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN, Horisberger JD, Lelièvre L, Geering K (2000) Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J Biol Chem 275:1976–1986

    Article  CAS  PubMed  Google Scholar 

  8. Li B, Hertz L, Peng L (2013) Cell-specific mRNA alterations in Na+, K+-ATPase α and β isoforms and FXYD in mice treated chronically with carbamazepine, an anti-bipolar drug. Neurochem Res 38:834–841

    Article  CAS  PubMed  Google Scholar 

  9. Yoshimura K (1973) Activation of Na-K activated ATPase in rat brain by catecholamine. J Biochem 74:389–391

    CAS  PubMed  Google Scholar 

  10. Godfraind T, Koch MC, Verbeke N (1974) The action of EGTA on the catecholamines stimulation of rat brain Na-K-ATPase. Biochem Pharmacol 23:3505–3511

    Article  CAS  PubMed  Google Scholar 

  11. Wu PH, Phillis JW (1979) Receptor-mediated noradrenaline stimulation of Na+–K+ ATPase in rat brain cortical homogenates. Gen Pharmacol 10:189–192

    Article  CAS  PubMed  Google Scholar 

  12. Xiong ZQ, Stringer JL (2000) Sodium pump activity, not glial spatial buffering, clears potassium after epileptiform activity induced in the dentate gyrus. J Neurophysiol 83:1443–1451

    CAS  PubMed  Google Scholar 

  13. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(Pt 3):427–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87:87–102

    PubMed  Google Scholar 

  15. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25:349–365

    Article  CAS  PubMed  Google Scholar 

  16. Dufour S, Dufour P, Chever O, Vallée R, Amzica F (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194:206–217

    Article  CAS  PubMed  Google Scholar 

  17. Macaulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Article  CAS  PubMed  Google Scholar 

  18. Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci Signal 5:ra26

    PubMed Central  PubMed  Google Scholar 

  19. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–622

    Article  PubMed Central  PubMed  Google Scholar 

  20. Walz W, Hertz L (1982) Ouabain-sensitive and ouabain-resistant net uptake of potassium into astrocytes and neurons in primary cultures. J Neurochem 39:70–77

    Article  CAS  PubMed  Google Scholar 

  21. Walz W, Hertz L (1984) Intense furosemide-sensitive potassium accumulation in astrocytes in the presence of pathologically high extracellular potassium levels. J Cereb Blood Flow Metab 4:301–304

    Article  CAS  PubMed  Google Scholar 

  22. Hamann S, Herrera-Perez JJ, Zeuthen T, Alvarez-Leefmans FJ (2010) Cotransport of water by the Na+–K+–2Cl cotransporter NKCC1 in mammalian epithelial cells. J Physiol 588:4089–4101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zeuthen T, Macaulay N (2012) Cotransport of water by Na+–K+–2Cl cotransporters expressed in Xenopus oocytes: NKCC1 versus NKCC2. J Physiol 590:1139–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lothman E, Lamanna J, Cordingley G, Rosenthal M, Somjen G (1975) Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Res 88:15–36

    Article  CAS  PubMed  Google Scholar 

  25. Hertz L, Peng L, Song D (2104) Ammonia, like K+, stimulates the Na+, K+, 2Cl cotransporter NKCC1 and the Na+, K+-ATPase and interacts with endogenous ouabain in astrocytes. Neurochem Res [Epub ahead of print]

  26. Pedersen SF, O’Donnell ME, Anderson SE, Cala PM (2006) Physiology and pathophysiology of Na+/H+ exchange and Na+–K+–2Cl cotransport in the heart, brain, and blood. Am J Physiol Regul Integr Comp Physiol 291:R1–R25

    Article  CAS  PubMed  Google Scholar 

  27. Hertz L, Bender AS, Woodbury DM, White HS (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22:209–215

    Article  CAS  PubMed  Google Scholar 

  28. Song D, Xu J, Hertz L, Peng L (2015) Regulatory volume increase in astrocytes exposed to hypertonic medium requires β1-adrenergic Na+/K+-ATPase stimulation and glycogenolysis. J Neurosci Res 93:130–139

  29. Orkand RK, Nicholls JG, Kuffler SW (1996) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    Google Scholar 

  30. Kuffler SW, Nicholls JG (1996) The physiology of neuroglial cells. Ergeb Physiol 57:1–90

    Article  Google Scholar 

  31. Bay V, Butt AM (2012) Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels. Glia 60:651–660

    Article  PubMed  Google Scholar 

  32. Scemes E, Spray DC (2012) Extracellular K+ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 37:2310–2316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rimmele TS, Chatton JY (2014) A novel optical intracellular imaging approach for potassium dynamics in astrocytes. PLoS One 9:e109243

    Article  PubMed Central  PubMed  Google Scholar 

  34. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37:2432–2438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8:1922–1928

    CAS  PubMed  Google Scholar 

  36. Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38:472–485

    Article  CAS  PubMed  Google Scholar 

  37. Seip G, Schultheiss G, Kocks SL, Diener M (2001) Interaction between store-operated non-selective cation channels and the Na+–Ca2+ exchanger during secretion in the rat colon. Exp Physiol 86:461–468

    Article  CAS  PubMed  Google Scholar 

  38. Müller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK (2014) Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia 62:526–534

    Article  PubMed  Google Scholar 

  39. Teiwes J, Toto RD (2007) Epithelial sodium channel inhibition in cardiovascular disease. A potential role for amiloride. Am J Hypertens 20:109–117

    Article  CAS  PubMed  Google Scholar 

  40. Song D, Du T, Li B, Cai L, Gu L, Li H, Chen Y, Hertz L, Peng L (2008) Astrocytic alkalinization by therapeutically relevant lithium concentrations: implications for myo-inositol depletion. Psychopharmacology 200:187–195

    Article  CAS  PubMed  Google Scholar 

  41. Segall L, Daly SE, Blostein R (2001) Mechanistic basis for kinetic differences between the rat α1, α2, and α3 isoforms of the Na, K-ATPase. J Biol Chem 276:31535–31541

    Article  CAS  PubMed  Google Scholar 

  42. Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L (2014) Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis [Epub ahead of print]

  43. Cruz NF, Ball KK, Dienel GA (2007) Functional imaging of focal brain activation in conscious rats: impact of [14C] glucose metabolite spreading and release. J Neurosci Res 85:3254–3266

    Article  CAS  PubMed  Google Scholar 

  44. Hertz L, Xu J, Song D, Yan E, Gu L, Peng L (2013) Astrocytic and neuronal accumulation of elevated extracellular K+ with a 2/3 K+/Na+ flux ratio—consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 7:114

    Article  PubMed Central  PubMed  Google Scholar 

  45. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1982) Stimulus-induced changes in extracellular Na+ and Cl concentration in relation to changes in the size of the extracellular space. Exp Brain Res 46:73–84

    Article  CAS  PubMed  Google Scholar 

  46. Dietzel I, Heinemann U, Lux HD (1989) Relations between slow extracellular potential changes, glial potassium buffering, and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2:25–44

    Article  CAS  PubMed  Google Scholar 

  47. Thomas RC (1972) Electrogenic sodium pump in nerve and muscle cells. Physiol Rev 52:563–594

    CAS  PubMed  Google Scholar 

  48. Risher WC, Andrew RD, Kirov SA (2009) Real-time passive volume responses of astrocytes to acute osmotic and ischemic stress in cortical slices and in vivo revealed by two-photon microscopy. Glia 57:207–221

    Article  PubMed Central  PubMed  Google Scholar 

  49. Huang R, Somjen GG (1995) The effect of graded hypertonia on interstitial volume, tissue resistance and synaptic transmission in rat hippocampal tissue slices. Brain Res 702:181–187

    Article  CAS  PubMed  Google Scholar 

  50. Yuan H, Gao B, Duan L, Jiang S, Cao R, Xiong YF, Rao ZR (2010) Acute hyperosmotic stimulus-induced Fos expression in neurons depends on activation of astrocytes in the supraoptic nucleus of rats. J Neurosci Res 88:1364–1373

    CAS  PubMed  Google Scholar 

  51. Juurlink BHJ, Hertz L (1992) Astrocytes. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods in cell cultures. Humana Press, New York, pp 269–321

    Google Scholar 

  52. Hertz L, Code WE (1993) Calcium channel signalling in astrocytes. In: Paoletti R, Godfraind T, Vankoullen PM (eds) Calcium antagonists: pharmacology and clinical research. Kluwer Academic Publishers, Boston, pp 205–213

    Chapter  Google Scholar 

  53. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63:844–914

    CAS  PubMed  Google Scholar 

  54. Langer J, Rose CR (2009) Synaptically induced sodium signals in hippocampal astrocytes in situ. J Physiol 587:5859–5877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gibbs ME, Ng KT (1977) Counteractive effects of norepinephrine and amphetamine on ouabain-induced amnesia. Pharmacol Biochem Behav 6:533–537

    Article  CAS  PubMed  Google Scholar 

  56. Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+, K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Gibbs ME, Hutchinson DS, Summers RJ (2008) Role of beta-adrenoceptors in memory consolidation: beta3-adrenoceptors act on glucose uptake and beta2-adrenoceptors on glycogenolysis. Neuropsychopharmacology 33:2384–2397

    Article  CAS  PubMed  Google Scholar 

  58. Seidel JL, Shuttleworth CW (2011) Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience 192:295–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gable ME, Abdallah SL, Najjar SM, Liu L, Askari A (2014) Digitalis-induced cell signaling by the sodium pump: on the relation of Src to Na+/K+-ATPase. Biochem Biophys Res Commun 446:1151–1154

    Article  CAS  PubMed  Google Scholar 

  60. Fishman MC (1979) Endogenous digitalis-like activity in mammalian brain. Proc Natl Acad Sci USA 76:4661–4663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Leenen FHH, Harmsen E, Yu H (1994) Dietary sodium and central vs. peripheral ouabain-like activity in Dahl salt-sensitive vs. salt-resistant rats. Am J Physiol 267:H91916–H91920

    Google Scholar 

  62. Bagrov AY, Fedorova OV (2005) Cardenolide and bufadienolide ligands of the sodium pump. How they work together in NaCl sensitive hypertension. Front Biosci 10:2250–2256

    Article  CAS  PubMed  Google Scholar 

  63. Kala G, Kumarathasan R, Peng L, Leenen FH, Hertz L (2000) Stimulation of Na+, K+-ATPase activity, increase in potassium uptake, and enhanced production of ouabain-like compounds in ammonia-treated mouse astrocytes. Neurochem Int 36:203–211

    Article  CAS  PubMed  Google Scholar 

  64. Haas M, Askari A, Xie Z (2000) Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem 275:27832–27837

    CAS  PubMed  Google Scholar 

  65. Zhang L, Zhang Z, Guo H, Wang Y (2008) Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation. Fundam Clin Pharmacol 22:615–621

    Article  CAS  PubMed  Google Scholar 

  66. Cai L, Du T, Song D, Li B, Hertz L, Peng L (2011) Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 31:250–264

    Article  PubMed  Google Scholar 

  67. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  68. Song H, Thompson SM, Blaustein MP (2013) Nanomolar ouabain augments Ca2+ signaling in rat hippocampal neurones and glia. J Physiol 591:1671–1689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Blaustein MP, Zhang J, Chen L, Song H, Raina H, Kinsey SP, Izuka M, Iwamoto T, Kotlikoff MI, Lingrel JB, Philipson KD, Wier WG, Hamlyn JM (2009) The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 53:291–298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28:6659–6663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Song D, Xu J, Du T, Yan E, Hertz L, Walz W, Peng L (2014) Inhibition of brain swelling after ischemia-reperfusion by β-adrenergic antagonists—correlation with increased K+ and decreased Ca2+ concentrations in extracellular fluid. Biomed Res Int 2014:873590

    PubMed Central  PubMed  Google Scholar 

  72. Hansen AJ, Nedergaard M (1998) Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 9:195–209

    Google Scholar 

  73. Goyagi T, Horiguchi T, Nishikawa T, Tobe Y (2010) Post-treatment with selective β1 adrenoceptor antagonists provides neuroprotection against transient focal ischemia in rats. Brain Res 1343:213–217

    Article  CAS  PubMed  Google Scholar 

  74. Hertz L, Xu J, Chen Y, Gibbs ME, Du T, Hertz L, Xu J, Chen Y, Gibbs ME, Du T (2014) Antagonists of the vasopressin V1 receptor and of the β1-adrenoceptor inhibit cytotoxic brain edema in stroke by effects on astrocytes—but the mechanisms differ. Curr Neuropharmacol 12:308–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Du T, Li B, Li H, Li M, Hertz L, Peng L (2010) Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent. J Neurochem 115:1007–1023

    Article  CAS  PubMed  Google Scholar 

  76. Kirstein M, Eickhorn R, Langenfeld H, Kochsiek K, Antoni H (1991) Influence of beta-adrenergic stimulation on the fast sodium current in the intact rat papillary muscle. Basic Res Cardiol 86:441–448

    Article  CAS  PubMed  Google Scholar 

  77. Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, Tucker AL, Bers DM (2005) Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circ Res 97:252–259

    Article  CAS  PubMed  Google Scholar 

  78. Béguin P, Crambert G, Monnet-Tschudi F, Uldry M, Horisberger JD, Garty H, Geering K (2002) FXYD7 is a brain-specific regulator of Na, K-ATPase α1-beta isozymes. EMBO J 21:3264–3273

    Article  PubMed Central  PubMed  Google Scholar 

  79. Xu J, Song D, Bai Q, Cai L, Hertz L, Peng L (2014) Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA. Neurochem Res 39:661–667

    Article  CAS  PubMed  Google Scholar 

  80. Hutchinson DS, Summers RJ, Gibbs ME (2007) Beta2- and beta3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: A mechanism for memory enhancement? J Neurochem 103:997–1008

    Article  CAS  PubMed  Google Scholar 

  81. Cambron M, D’Haeseleer M, Laureys G, Clinckers R, Debruyne J, De Keyser J (2012) White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis. J Cereb Blood Flow Metab 32:413–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Li J, Philip JL, Xu X, Theccanat T, Razzaque MA, Akhter SA (2014) β-Arrestins regulate human cardiac fibroblast transformation and collagen synthesis in adverse ventricular remodeling. J Mol Cell Cardiol 76C:73–83

    Article  Google Scholar 

  83. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Müller MS (2014) Functional impact of glycogen degradation on astrocytic signalling. Biochem Soc Trans 42:1311–1315

    Article  PubMed Central  PubMed  Google Scholar 

  85. Öz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE, Seaquist ER (2012) Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab 32:256–263

    Article  PubMed Central  PubMed  Google Scholar 

  86. Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102:466–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Müller MS, Pedersen SE, Walls AB, Waagepetersen HS, Bak LK (2015) Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 63:154–162

  88. Dienel GA, Cruz NF (2014) Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis [Epub ahead of print]

  89. Fernández-Moncada I, Barros LF (2014) Non-preferential fuelling of the Na+/K+-ATPase pump. Biochem J 460:353–361

    Article  PubMed  Google Scholar 

  90. Peng L, Juurlink BH, Hertz L (1996) Pharmacological and developmental evidence that the potassium-induced stimulation of deoxyglucose uptake in astrocytes is a metabolic manifestation of increased Na+-K+-ATPase activity. Dev Neurosci 18:353–359

    Article  CAS  PubMed  Google Scholar 

  91. Hertz L, Schou M (1962) Univalent cations and the respiration of brain-cortex slices. Biochem J 85:93–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Walz W, Mukerji S (1988) Lactate release from cultured astrocytes and neurons: a comparison. Glia 1:366–370

    Article  CAS  PubMed  Google Scholar 

  93. Ashford CA (1934) Glycolysis in brain tissue. Biochem J 28:2229–2236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by Grants No. 31440048 from the National Natural Science Foundation of China to LP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Peng.

Additional information

Special Issue: In Honor of Dr. Gerald Dienel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertz, L., Song, D., Xu, J. et al. Role of the Astrocytic Na+, K+-ATPase in K+ Homeostasis in Brain: K+ Uptake, Signaling Pathways and Substrate Utilization. Neurochem Res 40, 2505–2516 (2015). https://doi.org/10.1007/s11064-014-1505-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1505-x

Keywords

Navigation