Skip to main content
Log in

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  • Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.)133, 631–655 (1956).

    CAS  Google Scholar 

  • Allen, J. N.: Extracellular space in the central nervous system. Arch. Neurol. Psychiat. (Chic.)73, 241–245 (1955).

    CAS  Google Scholar 

  • Allerand, C. D., andM. D. Yahr: Gamma globulin affinity for normal human tissue of the central nervous system. Science144, 1141–1142 (1964).

    PubMed  CAS  Google Scholar 

  • Andres, K. H.: Untersuchungen über morphologische Verärungen in Spinalganglien während der retrograden Degeneration. Z Zellforsch.55, 49–79 (1961).

    PubMed  CAS  Google Scholar 

  • Araki, T., andT. Otani: Response of single motoneurons to direct stimulation in toad's spinal cord. J. Neurophysiol.18, 472–485 (1955)

    PubMed  CAS  Google Scholar 

  • Bakay, L.: The blood-brain barrier. Springfield, Ill.: Ch. C. Thomas 1956.

    Google Scholar 

  • Baker, P. F.: A method for the location of extracellular space in crab nerve. J. Physiol. (Lond.)180, 439–447 (1965)

    CAS  Google Scholar 

  • Barlow, C. F., N. S. Domek, M. A. Goldberg, andL. J. Both: Extracellular brain space measured by S35 sulfate. Arch. Neurol. (Chic.)5, 102–110 (1961).

    CAS  Google Scholar 

  • Bennett, H. S., J. H. Luft, andJ. C. Hampton: Morphological classification of vertebrate blood capillaries. Amer. J. Physiol.196, 381–390 (1959).

    PubMed  CAS  Google Scholar 

  • Bertonlini, B.: Ultrastructure of the spinal cord of the lamprey. 1. Ultrastruct. Res.11, 1–24 (1964).

    Google Scholar 

  • Birks, R., B. Katz, andR. Miledi: Physiological and structural changes at the amphibian neuromuscular junction, in the course of nerve degeneration. J. Physiol. (Lond.)150, 145–149 (1960).

    CAS  Google Scholar 

  • Blackman, J. G., B. L. Ginsborg, andC. Ray: Some effects of changes in ionic concentration on the action potential of sympathetic ganglion cells in the frog. J. Physiol. (Lond.)167, 374–388 (1963).

    CAS  Google Scholar 

  • Bondareff, W.: Distribution of ferritin in the cerebral cortex of the mouse revealed by electron microscopy. Exp. Neural.10, 377–382 (1964).

    CAS  Google Scholar 

  • Bornstein, M. B.: A tissue culture approach to demyelinatioe disorders. Nat. Cancer Just. Monogr.11, 197–211 (1963)

    CAS  Google Scholar 

  • ——, andS. H. Appel: Tissue cuture studies of demyelination. In: Research in demyelinating diseases. Ann. N.Y. Acad. Sci.122, 280–286 (1965)

    PubMed  CAS  Google Scholar 

  • ——, andS. M. Crain: Functional studies of cultured brain tissues as related to “myelinative disorders”. Science148, 1242–1244 (1965).

    PubMed  CAS  Google Scholar 

  • ——, andM. R. Murray: Serial observations on patterns of growth, myelin formation, maintenance and degeneration in cultures of newborn rat and kitten cerebellum. J. biophys. biochem. Cytol.4, 499–504 (1955).

    Google Scholar 

  • Bortoff, A.: Localization of slow potential responses in theNecturus retina. Vision Res.4, 627–635 (1964).

    PubMed  CAS  Google Scholar 

  • Bradbury, M. W. B., andH. Davson: Transport of urea, creatinine and certain monosaccharides between blood and fluid perfusing cerebral ventricular system of rabbit. J. Physiol. (Lond.)170, 195–211 (1964).

    CAS  Google Scholar 

  • Brightman, M. W.: The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution. J. Cell Biol.26, 99–123 (1965)

    PubMed  CAS  Google Scholar 

  • ——, andS. L. Palay: The fine structure of ependyma in the brain of the cat. J. Cell Biol.19, 415–439 (1963).

    PubMed  CAS  Google Scholar 

  • Brinley jr.,F. J.: Ion fluxes in the central nervous system. Int. Rev. Neurobiol.5, 155–242 (1963)

    Google Scholar 

  • Brodal, A.: Fiber connections of the vestibular nuclei, p. 224–246. In: Neural mechanisms of the auditory and vestibular systems, edit.G. L. Rasmussen, andW. F. Windle. Springfield, Ill.: Ch. C. Thomas 1960.

    Google Scholar 

  • Brown, K. T., andT. N. Wiesel: Intraretinal recording with micropipette electrodes in the intact cat eye. J. Physiol. (Lond.)149, 537–562 (1959)

    CAS  Google Scholar 

  • Bubis, J. J., andS. A. Luse: An electron microscopic study of experimental allergic encephalitis in the rat. Amer. J. Path.44, 299–318 (1964).

    PubMed  CAS  Google Scholar 

  • Bunge, M. B., R. P. Bunge, andG. D. Pappas: Electron microscopic demonstration of connections between glia and myelin sheaths in the developing mammalian central nervous system. J. Cell Biol.12, 448–454 (1962).

    PubMed  CAS  Google Scholar 

  • —— andH. Ris: Ultrastructural study of remyelination in an experimental lesion in adult spinal cord. J. biophys. biochem. Cytol.10, 67–94 (1961).

    PubMed  CAS  Google Scholar 

  • Bunge, R. P., M. B. Bunge, andE. R. Peterson: An electron microscope study of cultures of rat spinal cord. J. Cell Biol.24, 163–191 (1965)

    PubMed  CAS  Google Scholar 

  • ——, andP. M. Glass: Some observations on myelin-glial relationships and on the etiology of the cerebrospinal fluid exchange lesion. In: Research in demyelinating diseases. Ann. N.Y. Acad. Sci.122, 15–28 (1965)

    PubMed  CAS  Google Scholar 

  • Cajal, S. Ramon Y.: Degeneration and regeneration in the nervous system. 2 vols., transl. from Spanish ed. of 1913. Oxford Univ. Press. London: Humphrey Milford 1928.

    Google Scholar 

  • —— Histology. RevisedJ. F. Tello-Munoz, Translated byM. Fernan-Nunez. Baltimore: William Wood & Co. 1933

    Google Scholar 

  • —— Histologie du système nerveux de l'homme et des vertébrés. 2 vols. Madrid: Instituto Ramon Y Cajal 1952.

    Google Scholar 

  • Cammermeyer, J.: Reappraisal of the perivascular distribution of oligodendrocytes. Amer. J. Anat.106, 197–231 (1960).

    PubMed  CAS  Google Scholar 

  • Chapman-Andresen, C.: Studies on pinocytosis in amoeba. C. R. Lab. Carlsberg33, 73–264 (1962).

    Google Scholar 

  • Clemente, C. D.: Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol.6, 257–301 (1964).

    PubMed  CAS  Google Scholar 

  • Coggeshall, R. E., andD. W. Fawcett: The fine structure of the central nervous system of the leech,Hirudo medicinalis. J. Neurophysiol.27, 229–289 (1964).

    PubMed  CAS  Google Scholar 

  • Crain, S. M.: Resting and action potentials of cultured chick embryo spinal ganglion cells. J. comp. Neurol.104, 285–330 (1956).

    PubMed  CAS  Google Scholar 

  • ——, andM. B. Bornstein: Bioelectric activity of neonatal mouse cerebral cortex during growth and differentiation in tissue culture. Exp. Neurol.10, 425–450 (1964).

    PubMed  CAS  Google Scholar 

  • Cummins, J. T., andH. Hydén: Adenosine phosphate levels and adenosine triphosphatases in neurons, glia and neuronal membranes of the vestibular nucleus. Biochim. biophys. Acta (Amst.)60, 271–283 (1962).

    CAS  Google Scholar 

  • Curtis, A. S. G.: Cell contact and adhesion. Biol. Rev.37, 82–129 (1962).

    PubMed  CAS  Google Scholar 

  • Davson, H.: A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol. (Lond.)129, 111–133 (1955)

    CAS  Google Scholar 

  • —— Physiology of the ocular and cerebrospinal fluids. London: Churchill 1956.

    Google Scholar 

  • —— The cerebrospinal fluid. Ergebn. Physiol.52, 20–73 (1963).

    PubMed  CAS  Google Scholar 

  • ——, andM. Pollay: Turnover of24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier. J. Physiol. (Lond.)167, 247–255 (1963)

    CAS  Google Scholar 

  • ——, andE. Spaziani: The blood-brain barrier and the extracellular space of brain. J. Physiol. (Lond.)149, 135–143 (1959).

    CAS  Google Scholar 

  • Deffner, G. G. J., andR. E. Hafter: Chemical investigations of the giant nerve fibres of the squid. III. Identification and quantitative estimation of free organic ninhydrinnegative constituents. Biochim. biophys. Acta (Amst.)42, 189–199 (1960).

    CAS  Google Scholar 

  • De Robertis, E.: Some old and new concepts of brain structure. Wld. Neurol.3, 98–111 (1962).

    Google Scholar 

  • ——, andH. M. Gerschenfeld: Submicroscopic morphology and function of glial cells. Int. Rev. Neurobiol.3, 1–65 (1961).

    Google Scholar 

  • Dobbing, J.: The blood-brain barrier. Physiol. Rev.41, 130–188 (1961).

    PubMed  CAS  Google Scholar 

  • Donahue, S., andG. D. Pappas: The fine structure of capillaries in the cerebral cortex of the rat at various stages of development. Amer. J. Anat.108, 331–347 (1961).

    PubMed  CAS  Google Scholar 

  • Douglas, W. W., andJ. M. Ritchie: Mammalian nonmyelinated nerve fibers. Physiol. Rev.42, 297–334 (1962).

    PubMed  CAS  Google Scholar 

  • Dydýnska, M., andD. R. Wilkie: The osmotic properties of striated muscle fibres in hypertonic solutions. J. Physiol. (Lond.)169, 312–329 (1963).

    Google Scholar 

  • Eckert, R.: Electrical interaction of paired ganglion cells in the leech. J. gen. Physiol.46, 573–587 (1963).

    PubMed  CAS  Google Scholar 

  • Edström, J. E.: Quantitative determination of ribonucleic acid in the microgram range. J. Neurochem.3, 100–108 (1958).

    PubMed  Google Scholar 

  • —— Extraction, hydrolysis and electrophoretic analysis of ribonucleic acid from microscopic tissue units (Microphoresis). J. biophys. biochem. Cytol.8, 39–43 (1960).

    PubMed  Google Scholar 

  • ——, andW. Grampp: Nervous activity and metabolism of ribonucleic acids in the crustacean stretch receptor neuron. J. Neurochem.12, 735–741 (1965)

    PubMed  Google Scholar 

  • Edström, R.: An explanation of the blood-brain barrier phenomenon. Acta psychiat. scand.33, 403–416 (1958).

    Google Scholar 

  • —— Recent developments of the blood-brain barrier concept. Int. Rev. Neurobiol.7, 153–190 (1964).

    Google Scholar 

  • Elliott, K. A. C., andI. H. Heller: Metabolism of neurons and glia, pp. 286–290. In: Metabolism of the nervous system, ed.D. Richter. London: Pergamon Press 1957

    Google Scholar 

  • Evarts, E. V.: Neuronal activity in visual and motor cortex during sleep and waking. In: Aspects anatomo-fonctionnels de la physiologie du sommeil, ed. Centre National de la Recherche Scientifique, pp. 189–212. Paris 1965.

  • Farquhar, M. G.: Fine structure and function in capillaries of the anterior pituitary gland. Angiology12, 270–292 (1961).

    PubMed  CAS  Google Scholar 

  • ——, andJ. F. Hartman: Neuroglial structure and relationships as revealed by electron microscopy. J. Neuropath.16, 18–39 (1957)

    PubMed  CAS  Google Scholar 

  • ——, andG. E. Palade: Junctional complexes in various epithelia. J. Cell Biol.17, 375–412 (1963)

    PubMed  CAS  Google Scholar 

  • Fawcett, D. W.: Surface specializations of absorbing cells. J. Histochem. Cytochem.13, 75–91 (1965).

    PubMed  CAS  Google Scholar 

  • Feldberg, W.: A pharmacological approach to the brain from its inner and outer surface. London: Camelot Press 1963.

    Google Scholar 

  • ——, andK. Fleischhauer: Penetration of bromophenol blue from the perfused cerebral ventricles into the brain tissue. J. Physiol. (Lond.)150, 451–462 (1960).

    CAS  Google Scholar 

  • Fencl, V., T. B. Miller, andJ. R. Pappenheimer: Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Amer. J. Physiol. (1966) (in press).

  • Fernandez-Morán, H., andJ. B. Finean: Electron microscope and low-angle X-ray diffraction studies of the nerve myelin sheath. J. biophys. biochem. Cytol.3, 725–748 (1957).

    PubMed  Google Scholar 

  • Finean, J. B.: Electron microscope and X-ray diffraction studies of the effects of dehydration on the structure of myelin. I. Peripheral nerve. J. biophys. biochem. Cytol.8, 13–29 (1960).

    PubMed  CAS  Google Scholar 

  • Fleischhauer, K.: Neuroglia. Dtsch. med. Wschr.85, 2031–2035 (1960).

    Google Scholar 

  • —— Regional differences in the structure of the ependyma and subependymal layers of the cerebral ventricles of the cat, pp. 279–283 in: Regional neurochemistry, edS. S. Kety andJ. Elkes. London: Pergamon Press 1961.

    Google Scholar 

  • —— Fluoroscenzmikroskopische Untersuchungen über den Stofftransport zwischen Ventrikelliquor und Gehirn. Z. Zellforsch.62, 639–654 (1964).

    PubMed  CAS  Google Scholar 

  • Florey, H. W.: The transport of materials across the capillary wall. Quart. J. exp. Physiol.49, 117–129 (1964).

    Google Scholar 

  • Frankenhaeuser, B., andA. L. Hodgkin: The after-effects of impulses in the giant nerve fibres ofLoligo. J. Physiol. (Lond.)131, 341–376 (1956).

    CAS  Google Scholar 

  • Freygang jr.,W. J., D. A. Goldstein, andD. C. Hellam: The after-potential that follows trains of impulses in frog muscle fibres. J. gen. Physiol.47, 929–952 (1964).

    PubMed  Google Scholar 

  • Friede, R. L.: Der Kohlenhydratgehalt der Glia vonHirudo bei verschiedenen Funktionszustiinden. Z. Zellforsch.41, 509–520 (1955).

    PubMed  CAS  Google Scholar 

  • Friede, R. L.: The cytochemistry of normal and reactive astrocytes. J. Neuropath. exp. Neurol.21, 471–478 (1962).

    PubMed  CAS  Google Scholar 

  • —— Relationship of body size, nerve cell size, axon length and glial density in the cerebellum. Proc. nat. Acad. Sci. (Wash.)49, 187–193 (1963).

    CAS  Google Scholar 

  • —— Enzymatic response of astrocytes to various ions in vitro. J. Cell Biol.20, 5–15 (1964).

    PubMed  CAS  Google Scholar 

  • ——, andW. H. van Houten: Neuronal extension and glial supply: Functional significance of glia. Proc. nat. Acad. Sci. (Wash.)48, 817–821 (1962).

    CAS  Google Scholar 

  • Friedmann, U.: Blood-brain barrier. Physiol. Rev.22, 125–245 (1942).

    Google Scholar 

  • Furshpan, E. J.: “Electrical transmission” at an excitatory synapse in a vertebrate brain. Science144, 878–880 (1964).

    PubMed  CAS  Google Scholar 

  • Furukawa, T., andE. J. Furshpan: Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophysiol.26, 140–176 (1963).

    PubMed  CAS  Google Scholar 

  • Gallego, A.: Déscription d'une nouvelle couche céllulaire dans la rétine des mammifères et son rôle functionnel possible. Bull. de l'Assoc. des Anatomists. XLIXe Réunion (Madrid, 6–10 Septembre, 1964), pp. 624–631.

  • Geiger, R. S.: The behavior of adult mammalian cells in tissue culture. Int. Rev. Neurobiol.5, 1–52 (1963).

    PubMed  CAS  Google Scholar 

  • Geren, B. B.: The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp. Cell Res.7, 558–562 (1954).

    Google Scholar 

  • Gerschenfeld, H. M., F. Wald, J. A. Zadunaisky, andE. De Robertis: Functions of astroglia in the water-ion metabolism of the central nervous system. Neurology (Minneap.)9, 412–425 (1959)

    CAS  Google Scholar 

  • Glees, P.: Neuroglia morphology and function. Oxford: Blackwell Sci. Publ. 1955.

    Google Scholar 

  • Golgi, C.: Opera Omnia, Vol. 1, p. 40. Milano: U. Hoepli 1903a.

    Google Scholar 

  • —— Opera Omnia, vol. 2, p. 460. Milano: U. Hoepli 1903b.

    Google Scholar 

  • Gomirato, G., andH. Hydén: A biochemical glia error in Parkinson's disease. Brain86, 773–780 (1963).

    PubMed  CAS  Google Scholar 

  • Gonatas, N. K., S. Levine, andR. Shoulson: Phagocytosis and regeneration of myelin in an experimental leukoencephalopathy. An electron microscopic study. Amer. J. Path.44, 565–584 (1964).

    PubMed  CAS  Google Scholar 

  • Good, C. A., H. Kramer, andM. Somogyi: The determination of glycogen. J. biol. Chem.100, 485–491 (1933).

    CAS  Google Scholar 

  • Grampp, W., andJ. E. Edström: The effect of nervous activity on ribonucleic acid of the crustacean stretch receptor neuron. J. Neurochem.10, 725–732 (1963)

    PubMed  CAS  Google Scholar 

  • Granit, R.: Sensory mechanisms of the retina. London: Oxford University Press 1947.

    Google Scholar 

  • Gray, E. G.: In: Electron microscopy in Anatomy, edit.J. D. Boyd, pp. 54–61. London: Arnold 1961.

    Google Scholar 

  • —— Tissue of the central nervous system. In: Electron microscopic anatomy, ed.S. M. Kurtz, pp. 369–471. New York: Academic Press, Inc. 1964.

    Google Scholar 

  • ——, andR. W. Guillery: An electron microscopical study of the ventral nerve cord of the leech. Z. Zellforsch.60, 826–849 (1963).

    PubMed  CAS  Google Scholar 

  • Greengard, P., andR. W. Straub: After-potentials in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.)144, 442–462 (1958).

    CAS  Google Scholar 

  • Gruüsser, O. J.: Rezeptorpotentiale einzelner retinaler Zapfen der Katze. Naturwissenschaften44, 522 (1957)

    Google Scholar 

  • Hagiwara, S., andH. Morita: Electrotonic transmission between two nerve cells in leech ganglion. J. Neurophysiol.25, 721–731 (1962).

    PubMed  CAS  Google Scholar 

  • Hamberger, A.: Difference between isolated neuronal and vascular glia with respect to respiratory activity. Acta physiol. scand.58, Suppl. 203, 1–52 (1963).

    CAS  Google Scholar 

  • ——, andH. Hydén: Inverse enzymatic changes in neurons and glia during increased function and hypoxia. J. Cell Biol.16, 521–526 (1963)

    PubMed  CAS  Google Scholar 

  • ——, andH. Röckert: Intracellular potassium in isolated nerve cells and glial cells. J. Neurochem.11, 757–760 (1964).

    PubMed  CAS  Google Scholar 

  • Harreveld, A. van: Water and electrolyte distribution in central nervous tissue. Fed. Proc.21, 659–664 (1962).

    Google Scholar 

  • ——J. Crowell, andS. K. Malhotra: A study of extracellular space in cortical nervous tissue by freeze substitution. J. Cell Biol.25, 117–137 (1965).

    Google Scholar 

  • Hertz, L.: Possible role of neuroglia: A potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature (Lond.)206, 1091–1094 (1965)

    CAS  Google Scholar 

  • Hess, A.: The ground substance of the central nervous system and its relation to the blood-brain barrier. Wld Neurol.3, 118–124 (1962).

    CAS  Google Scholar 

  • Hess, H. H.: The rates of respiration of neurons and neuroglia in human cerebrum. In: Regional neurochemistry, edit.S. S. Kety andJ. Elkes, pp. 200–212. London: Pergamon Press 1961.

    Google Scholar 

  • Hild, W.: Observations on neurons and neuroglia from the area of the mesencephalic fifth nucleus of the catin vitro. Z. Zellforsch.47, 127–146 (1957).

    PubMed  CAS  Google Scholar 

  • ——, andI. Tasaki: Morphological and physiological properties of neurones and filial cells in tissue culture. J. Neurophysiol.25, 277–304 (1962).

    PubMed  CAS  Google Scholar 

  • Hill, A. V.: The diffusion of oxygen and lactic acid through tissues. Proc. roy. Soc. B104, 39–96 (1928).

    CAS  Google Scholar 

  • Hillman, H., andH. Hydén: Membrane potentials in isolated neuronesin vitro from Deiters' nucleus of rabbit. J. Physiol. (Lond.)177, 398–410 (1965).

    CAS  Google Scholar 

  • Hitchcock, D. I.: In: Physical chemistry of cells and tissues, edit.Höber. Philadelphia: Blakiston 1945

    Google Scholar 

  • Hodgkin, A. L.: Ionic movements and electrical activity in giant nerve fibres. Proc. roy. Soc. B148, 1–37 (1957)

    Google Scholar 

  • Hoffman, H. J., andJ. Olszewski: Spread of sodium fluorescein in normal brain tissue. A study of the mechanism of the blood-brain barrier. Neurology (Minneap.)11, 1081–1085 (1961).

    CAS  Google Scholar 

  • Holmgren, E.: Weitere Mitteilungen über “Saftkanälchen” der Nervenzellen. Anat. Anz.18, 290–296 (1900).

    Google Scholar 

  • Horstmann, E.: Zur Frage des extracellulären Raumes im Zentralnervensystem. Verh. Anat. Ges. (Jena), 1959, Suppl. to Anat. Anz.105, 100–107 (1958).

    Google Scholar 

  • —— Die Neuroglia und ihre physiologische Bedeutung. Verh. Anat. Ges. (Jena), 1962, Suppl. to Anat. Anz.109, 196–203 (1960–1961).

    Google Scholar 

  • ——, andH. Meves: Die Feinstruktur des molekulären Rindengraues und ihre physiologische Bedeutung. Z. Zellforsch.49, 569–604 (1959)

    Google Scholar 

  • Hosokawa, H., andH. Mannen: Some aspects of the histology of neuroglia. In: Morphology of neuroglia, edit.J. Nakai, pp. 1–52. Springfield, Ill.: Ch. C. Thomas 1963.

    Google Scholar 

  • Hubel, D. H., andT. N. Wiesel: Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J. Neurophysiol.28, 229–289 (1965)

    PubMed  CAS  Google Scholar 

  • Hunt, C. C., andP. G. Nelson: Structural and functional changes in the frog sympathetic ganglion following cutting of the presynaptic fibers. J. Physiol. (Lond.)177, 1–20 (1965)

    CAS  Google Scholar 

  • Hydén, H.: The neuron. In: The cell, edit.J. Brachet andA. Mirsky, vol. IV, p. 215. New York: Academic Press, Inc. 1961.

    Google Scholar 

  • —— A molecular basis of neuron-glia interaction. In: Macromolecules and biological memory, edit.F. O. Schmitt, pp. 55–69. Cambridge, Mass.: M.I.T. Press (1962a).

    Google Scholar 

  • —— The neuron and its glia — a biochemical and functional unit. Endeavour21, 144–155 (1962b).

    PubMed  Google Scholar 

  • ——, andE. Egyházi: Changes in the base composition of nuclear ribonucleic acid of neurons during a short period of enhanced protein production. J. Cell Biol.15, 37–44 (1962).

    PubMed  Google Scholar 

  • —— Glial RNA changes during a learning experiment in rats. Proc. nat. Acad. Sci. (Wash.)49, 618–624 (1963).

    Google Scholar 

  • —— Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness. Proc. nat. Acad. Sci. (Wash.)52, 1030–1035 (1965).

    Google Scholar 

  • Hydén, H., andP. W. Lange: Differences in the metabolism of oligodendroglia and nerve cells in the vestibular area. In: Regional neurochemistry, edit.S. S. Kety andJ. Elkes, pp. 190–199. London: Pergamon Press 1961.

    Google Scholar 

  • —— Kinetic study of neurone-glia relationship. J. Cell Biol.13, 233–237 (1962).

    PubMed  Google Scholar 

  • —— A differentiation in RNA response in neurons early and late during learning. Proc. nat. Acad. Sci. (Wash.)53, 946–952 (1965a).

    Google Scholar 

  • —— Rhythmic enzyme changes in neurons and glia during sleep. Science149, 654–656 (1965b).

    PubMed  Google Scholar 

  • ——, andA. Pigon: A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiter's nucleus. J. Neurochem.6, 57–72 (1960).

    PubMed  Google Scholar 

  • Ito, T.: Zytologische Untersuchungen über die Ganglienzellen des japanischen medizinischen Blutegels,Hirudo nipponica, mit besonderer Berücksichtigung auf die „dunkle Ganglienzelle”. Okajimas Folia anat. jap.14, 111–170 (1936).

    Google Scholar 

  • Jennings, M. A., V. T. Marchesi, andH. Florey: Transport of particles across the walls of small blood vessels. Proc. roy. Soc. B156, 14–19 (1962).

    CAS  Google Scholar 

  • Karlsson, U., andR. L. Schultz: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. I. Preservation with aldehyde perfusates versus direct perfusion with osmium tetroxide with special reference to membranes and the extracellular space. J. Ultrastruct. Res.12, 160–186 (1965).

    PubMed  CAS  Google Scholar 

  • Karnovsky, M. L.: Metabolic basis of phagocytic activity. Physiol. Rev.42, 143–168 (1962).

    PubMed  CAS  Google Scholar 

  • Katz, B., andR. Miledi: A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.)168, 389–422 (1963).

    CAS  Google Scholar 

  • Katzman, R.: Electrolyte distribution in mammalian central nervous system. Are glia high sodium cells? Neurology (Minneap.)11, 27–36 (1961).

    CAS  Google Scholar 

  • Kaye, G. I., S. Donahue, andG. D. Pappas: Electron microscopical evidence for the uptake of colloidal particles by Schwann cellsin situ. J. de Microscop.2, 605–612 (1963)

    Google Scholar 

  • ——, andG. D. Pappas: Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the corneain vivo. J. Cell Biol.12, 457–479 (1962).

    PubMed  CAS  Google Scholar 

  • Keynes, R. D., andJ. M. Ritchie: The movement of labelled ions in mammalian nonmyelinated nerve fibers. J. Physiol. (Lond.)179, 333–367 (1965).

    CAS  Google Scholar 

  • Kirsche, W.: Die regenerativen Vorgänge am Rückenmark erwachsener Teleostier nach operativer Kontinuitätstrennung. Z. mikr.-anat. Forsch.56, 190–265 (1951)

    Google Scholar 

  • Klatzo, I., andJ. Miquel: Observations on pinocytosis in nervous tissue. J. Neuropath. exp. Neurol.19, 475–487 (1960).

    PubMed  CAS  Google Scholar 

  • ——,P. J. Ferris, L. D. Prockop, andD. E. Smith: Observations on the passage of fluorescein labelled serum proteins (FLSP) from the cerebrospinal fluid. J. Neuropath. exp. Neurol.23, 18–35 (1964).

    PubMed  CAS  Google Scholar 

  • Kleeman, C. R., H. Davson, andE. Levin: Urea transport in the central nervous system. Amer. J. Physiol.203, 739–747 (1962).

    PubMed  CAS  Google Scholar 

  • Koch, A., J. B. Ranck jr., andB. L. Newman: Ionic content of the neuroglia. Exp. Neurol.6, 186–200 (1962).

    PubMed  CAS  Google Scholar 

  • Koelle, G. B.: The histochemical identification of acetyl-cholinesterase in cholinergic, adrenergic and sensory neurons. J. Pharmacol. exp. Ther.114, 167–184 (1955)

    PubMed  CAS  Google Scholar 

  • Konigsmark, B. W., andR. L. Sidman: Origin of brain macrophages in the mouse. J. Neuropath. exp. Neurol.22, 643–676 (1963)

    PubMed  CAS  Google Scholar 

  • Korey, S. R., andM. Orchen: Relative respiration of neuronal and glial cells. J.Neurochem.3, 277–285 (1959).

    PubMed  CAS  Google Scholar 

  • Krivánek, J.: Quantitative histochemistry of central nervous system. Fed. Proc. Trans. Suppl.24, 786–798 (1965).

    Google Scholar 

  • Kuffler, S. W., J. G. Nicholls, andR. Orkand: Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol.29, July 1966.

  • Kuffler, S. W., andD. D. Potter: Glia in the leech central nervous system. Physiological properties and neuron-glia relationship. J. Neurophysiol.27, 290–320 (1964).

    PubMed  CAS  Google Scholar 

  • Lajtha, A.: Protein metabolism of the nervous system. Int. Rev. Neurobiol.6, 1–98 (1964).

    CAS  Google Scholar 

  • Lampert, P. W.: Demyelination and remyelination in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.24, 371–385 (1965).

    Google Scholar 

  • ——, andS. Carpenter: Electron microscopic studies on the vascular permeability and the mechanism of demyelination in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol.24, 11–24 (1965).

    PubMed  CAS  Google Scholar 

  • Landolt, A. M.: Elektronmikroskopische Untersuchungen an der Perikaryenschichte der Corpora pedunculata von Waldameisen (Formica lugubris Zett.) mit besonderer Berücksichtigung der Neuron-Glia-Beziehung. Z. Zellforsch.66, 701–736 (1965).

    PubMed  CAS  Google Scholar 

  • Lasansky, A., andF. Wald: The extracellular space in the toad retina as defined by the distribution of ferrocanide. A light and electronmicroscopic study. J. Cell Biol.15, 463–479 (1962).

    PubMed  CAS  Google Scholar 

  • Leão, A. A. P., andR. S. Morison: Propagation of spreading cortical depression. J. Neurophysiol.8, 33–45 (1945).

    Google Scholar 

  • Lessell, S., andT. Kuwabara: Retinal neuroglia, Arch. Ophthal.70, 671–678 (1963).

    PubMed  CAS  Google Scholar 

  • Lewis, W. H.: Pinocytosis. Bull. Johns Hopk. Hosp.49, 17–23 (1931).

    Google Scholar 

  • Little, M. S., andJ. Morris: Glia bibliography 1960–1964. Neurosci. Res. Program Bull.2, Suppl. (1965).

  • Loewenstein, W. R., andY. Kanno: Studies on an epithelial (gland) cell junction. I. Modifications of surface membrane permeability. J. Cell Biol.22, 565–586 (1964).

    PubMed  CAS  Google Scholar 

  • ——S. J. Socolar, S. Higashino, Y. Kanno, andN. Davidson: Intercellular communication: renal, urinary bladder, sensory, and salivary gland cells. Science149, 295–298 (1965)

    PubMed  CAS  Google Scholar 

  • Lumsden, C. E.: Histological and histochemical aspects of normal neuroglial cells. In Biology of neuroglia, edit.W. F. Windle, pp. 141–161. Sprinfield, Ill.: Ch. C. Thomas 1958.

    Google Scholar 

  • ——, andC. M. Pomerat: Normal oligodendrocytes in tissue culture. Exp. Cell Res.2, 103–114 (1951).

    Google Scholar 

  • Luse, S. A.: Ultrastructure of the brain and its relation to transport of metabolites. Res. Publ. Ass. nerv. ment. Dis.40, 1–26 (1962).

    CAS  Google Scholar 

  • MacNichol, E. F., andG. Svaetichin: Electric responses from the isolated retinas of fishes. Amer. J. Ophthal.46, 26–46 (1958).

    PubMed  CAS  Google Scholar 

  • Majno, G., andG. E. Palade: Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. J. biophys. biochem. Cytol.11, 571–606 (1961).

    PubMed  CAS  Google Scholar 

  • Marón, K.: Regeneration capacity of the spinal cord inLampetra fluviatilis larvae. Folia biol. (Warsaw)7, 179–189 (1959).

    Google Scholar 

  • Marshall, J. M., andV. T. Nachmias: Cell surface and pinocytosis. J. Histochem. Cytochem.13, 92–104 (1965).

    PubMed  CAS  Google Scholar 

  • Maturana, H. R.: The fine anatomy of the optic nerve of Anurans — an electron microscope study. J. biophys. biochem. Cytol.7, 107–120 (1960).

    PubMed  CAS  Google Scholar 

  • Maynard, E. A., R. L. Schultz, andD. C. Pease: Electron microscopy of the vascular bed of rat cerebral cortex. Amer. J. Anat.100, 409–433 (1957).

    PubMed  CAS  Google Scholar 

  • McIlwain, H.: Chemical exploration of the brain. London: Elsevier Publ. Co. 1963

    Google Scholar 

  • Miller, F.: Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J. biophys. biochem. Cytol.8, 689–718 (1960).

    PubMed  CAS  Google Scholar 

  • Mitarai, G.: Determination of ultramicroelectrode tip position in the retina in relation to S potential. J. gen. Physiol.43, Suppl. 95–100 (1960).

    PubMed  Google Scholar 

  • Moruzzi, G.: Active processes in the brain stem during sleeping. Harvey Lect. Series58, 233–297 (1963).

    CAS  Google Scholar 

  • Motokawa, K.: Mechanism for the transfer of information along the visual pathways. Int. Rev. Neurobiol.5, 212–181 (1963)

    Google Scholar 

  • Motokawa, K., T. Oikawa, andK. Tasaki: Receptor potential of vertebrate retina. J. Neurophysiol.20, 186–199 (1957).

    PubMed  CAS  Google Scholar 

  • Mugnaini, E., andF. Walberg: Ultrastructure of neuroglia. Ergebn. Anat. Entwickl.-Gesch.37, 193–236 (1964).

    Google Scholar 

  • Muir, A. R., andA. Peters: Quintuple-layered membrane junctions at terminal bars between endothelial cells. J. Cell Biol.12, 443–448 (1962).

    PubMed  CAS  Google Scholar 

  • Nageotte, J.: Phénomènes de sécrétion dans la protoplasma des cellules nérvogliques de la substance grise. C. R. Soc. Biol. (Paris)68, 1068–1069 (1910).

    Google Scholar 

  • Nakai, J., edit.: Morphology of neuroglia. Springfield, Ill.: Ch. C. Thomas 1963

    Google Scholar 

  • Nakajima, V., J. D. Pappas, andM. V. L. Bennett: The fine structure of the supramedullary neurons of the Puffer with special reference to endocellular and pericellular capillaries. Amer. J. Anat.116, 471–492 (1965).

    PubMed  CAS  Google Scholar 

  • Nicholls, J. G., andD. E. Wolfe: The distribution of14C-labelled sucrose, inulin and dextran in extracellular space and in cells of the central nervous system of the leech (in preparation).

  • ——, andS. W. Kuffler: Extracellular space as a pathway for exchange between blood and neurons in central nervous system of leech: The ionic composition of glial cells and neurons. J. Neurophysiol.27 645–673, (1964).

    PubMed  CAS  Google Scholar 

  • —— Na and K content of glial cells and neurons determined by flame photometry in the central nervous system of the leech. J. Neurophysiol.28, 519–525, (1965)

    PubMed  CAS  Google Scholar 

  • Nurnberger, J. I., andM. W. Gordon: The cell density of neural tissues: Direct counting method and possible applications as a biologic referent. In: Ultrastructure and cellular chemistry of neural tissue, edit.H. Waelsch. New York: Hoeber 1957.

    Google Scholar 

  • Oksche, A.: Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus Choroidei für den Kohlenhydratstoffwechsel des ZNS. Z. Zellforsch.48, 74–129 (1958).

    PubMed  CAS  Google Scholar 

  • —— Der histochemisch nachweisbare Glykogenaufbau und -Abbau in den Astrocyten und Ependymzellen als Beispiel einer funktionsabhängigen Stoffwechselaktivität der Neuroglia. Z. Zellforsch.54, 307–361 (1961).

    PubMed  CAS  Google Scholar 

  • Orkand, R. K., J. G. Nicholls, andS. W. Kuffler: The effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol.29, July 1966.

  • Palacios, O., andG. E. Petze: Zur Frage der Erzeugung einer „Allergischen Polyneuritis” in Kaninchen mit Schwannschem Zellgewebekultur-Antigen. Z. Immunitdtsu. Allergieforsch.126, 122–124 (1964).

    CAS  Google Scholar 

  • Palade, G. E.: Blood capillaries of the heart and other organs. Circulation24, 368–384 (1961).

    PubMed  CAS  Google Scholar 

  • Palay, S. L.: Synapses in the central nervous system. J. biophys. biochem. Cytol.2 (Suppl.), 193–201 (1956).

    PubMed  CAS  Google Scholar 

  • —— The fine structure of the neurohypophysis. In: Progress in neurobiology. II. Ultrastructure and cellular chemistry of neural tissue, edit.H. Waelsch, pp. 31–44. New York: Hoeber-Harper 1957.

    Google Scholar 

  • —— An electron microscopical study of neuroglia. In: Biology of neuroglia, edit.W. F. Windle, pp. 24–38. Springfield, Ill.: Ch. C. Thomas 1958a.

    Google Scholar 

  • —— The morphology of synapses in the central nervous system. Exp. Cell Res., Suppl.5, 275–293 (1958b).

    Google Scholar 

  • —— andL. J. Karlin: An electron microscopic study of the intestinal villus. I. The fasting animal. J. biophys. biochem. Cytol.5, 363–371 (1959a).

    PubMed  CAS  Google Scholar 

  • ——: An electron microscopic study of the intestinal villus. II. The pathway of fat absorption. J. biophys. biochem. Cytol.5, 372–383 (1959b).

    Google Scholar 

  • —— andJ. P. Revel: The morphology of fat absorption. In: Lipid transport, edit.H. C. Meng, pp. 1–11. Springfield, Ill.: Ch. C. Thomas 1964.

    Google Scholar 

  • Pappas, G. D., andV. M. Tennyson: An electron microscopic study of the passage of colloidal particles from the blood vessels of the ciliary processes and choroid plexus of the rabbit. J. Cell Biol.15, 227–239 (1962).

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J. R.: Passage of molecules through capillary walls. Physiol. Rev.33, 387–423 (1953).

    PubMed  CAS  Google Scholar 

  • ——V. Fencl, S. R. Heisey, andD. Held: Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Amer. J. Physiol.208, 436–450 (1965).

    PubMed  CAS  Google Scholar 

  • Penfield, W., edit.: Cytology and cellular pathology of the nervous system, vol. 2. New York: Paul B. Hoeber 1932.

    Google Scholar 

  • Peters, A.: The formation and structure of myelin sheaths in the central nervous system. J. biophys. biochem. Cytol.8, 431–446 (1960).

    PubMed  CAS  Google Scholar 

  • —— Anatomical considerations of the site of the blood-brain barrier. J. Anat. (Lond.)95, Suppl, 20–22 (1961).

    Google Scholar 

  • —— Plasma membrane contacts in the central nervous system. J. Anat. (Lond.)96, 237–248 (1962).

    CAS  Google Scholar 

  • —— Observations on the connexions between myelin sheaths and glial cells in the optic nerves of young rats. J. Anat. (Lond.)98, 125–134 (1964).

    CAS  Google Scholar 

  • ——, andS. L. Palay: An electron microscope study of the distribution and patterns of astroglial processes in the central nervous system. J. Anat. (Lond.)99, 419 (1965)

    Google Scholar 

  • Pette, E., andH. Bauer, edits.: Experimental contributions to the pathogenesis of the demyelinating encephalomyelitides. Z. Immunitäts- u. Allergieforsch.126, 1–248 (1964).

    Google Scholar 

  • Pipa, R. L.: Studies on the hexapod nervous system. III. Histology and histochemistry of cockroach neuroglia. J. comp. Neurol.116, 15–26 (1961).

    PubMed  CAS  Google Scholar 

  • Pomerat, C. M.: Dynamic neurogliology. Tex. Rep. Biol. Med.10, 883–913 (1952).

    Google Scholar 

  • —— Cinematographic analysis of cell dynamics. Fed. Proc.17, 975–984 (1958).

    PubMed  CAS  Google Scholar 

  • —— Functional concepts based on tissue culture studies of neuroglial cells. In: Biology of neuroglia, edit.W. F. Windle, pp. 162–180. Springfield, Ill.: Ch. C. Thomas 1958.

    Google Scholar 

  • Pope, A.: Implication of histochemical studies for metabolism of the neuroglia In: Biology of neuroglia, edit.W. F. Windle, pp. 211–233. Springfield, Ill.: Ch. C. Thomas 1958.

    Google Scholar 

  • ——, andH. H. Hess: Cytochemistry of neurones and neuroglia, pp. 72–82. In: Metabolism of the nervous system, edit.D. Richter. London: Pergamon Press 1957.

    Google Scholar 

  • Potanos, J. N., A. Wolf, andD. Cowen: Cytochemical localization of oxidative enzymes in human nerve cells and neuroglia. J. Neuropath. exp. Neurol.18, 627–635 (1959)

    PubMed  CAS  Google Scholar 

  • Rall, D. P.: The structure and function of the cerebrospinal fluid, pp. 269–282. In: The cellular functions of membrane transport, edit.J. F. Hoffman. Englewood Cliffs, N. J.: Prentice-Hall 1964.

    Google Scholar 

  • ——, andC. G. Zubrod: Mechanisms of drug absorption and excretion. Ann. Rev. Pharmacol.2, 109–128 (1962).

    CAS  Google Scholar 

  • Reed, D. J., andD. M. Woodbury: Kinetics of movement of iodide, sucrose, inulin and radio-iodinated serum albumin (RISA) in the central nervous system and cerebrospinal fluid of the rat. J. Physiol. (Lond.)169, 816–850 (1963).

    CAS  Google Scholar 

  • Rio Hortega, P. del: Tercera aportacion al conocimiento morfologico y interpretation functional de la oligodendroglia. Mem. Real. Soc. Esp. Hist. Nat.14, 1–122 (1928).

    Google Scholar 

  • Rio Hortega, P. del: Microglia. In: Cytology and cellular pathology of the nervous system, vol. II, edit.W. Penfield, pp. 483–543. New York: Paul B. Hoeber Inc. 1932.

    Google Scholar 

  • Rivers, T. M., andF. F. Schwentker: Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J. exp. Med.61, 689–702 (1935).

    PubMed  CAS  Google Scholar 

  • Roberts, E., andC. F. Baxter: Neurochemistry. Ann. Rev. Biochem.32, 513–552 (1963).

    PubMed  CAS  Google Scholar 

  • Roberts, N. R., R. R. Coelho, O. H. Lowry, andE. J. Crawford: Enzyme activities of giant squid axoplasm and axon sheath. J. Neurochem.3, 109–116 (1958).

    PubMed  CAS  Google Scholar 

  • Robertson, J. D., T. S. Bodenheimer, andD. E. Stage: The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J. Cell Biol.19, 157–199 (1964).

    Google Scholar 

  • Roots, B. I., andP. V. Johnston: Isolated rabbit neurons: electron microscopical observations. Nature (Lond.)207, 315–316 (1965).

    CAS  Google Scholar 

  • Rosenbluth, J.: The visceral ganglion ofAplysia californica. Z. Zellforsch.60, 213–236 (1963).

    PubMed  CAS  Google Scholar 

  • ——, andS. L. Wissig: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol.23, 307–325 (1964).

    PubMed  CAS  Google Scholar 

  • Rugh, R.: Vertebrate embryology, p. 437. New York: Harcourt, Brace and World, Inc., 1964.

    Google Scholar 

  • Ryser, H. J. P.: The measurement of I131-serum albumin uptake by tumor cells in tissue culture. Lab. Invest.12, 1009–1017 (1963)

    PubMed  CAS  Google Scholar 

  • Scharrer, E.: The blood vessels of the nervous tissue. Quart. Rev. Biol.19, 308–318 (1944).

    Google Scholar 

  • Schultz, R. L.: Macroglial identification in electron micrographs. J. comp. Neurol.122, 281–296 (1964).

    PubMed  CAS  Google Scholar 

  • Schultz, R., E. C. Berkowitz, andD. C. Pease: The electron microscopy of the lamprey spinal cord. J. Morph.98, 251–274 (1956).

    Google Scholar 

  • Schultz, R. L., andU. Karlsson: Fixation of the central nervous system for electron microscopy by aldehyde perfusion. II. Effect of osmolarity, pH of perfusate, and fixative concentration. J. Ultrastruct. Res.12, 187–206 (1965).

    PubMed  CAS  Google Scholar 

  • Schultz, R. L., E. A. Maynard, andD. C. Pease: Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum. Amer. J. Anat.100, 369–407 (1957).

    PubMed  CAS  Google Scholar 

  • Sidman, R. L., M. M. Dickie, andS. Appel: Mutant mice (Quaking andJimpy) with deficient myelination in the central nervous system. Science144, 309–311 (1964).

    PubMed  CAS  Google Scholar 

  • Sjöstrand, F. S.: Topographic relationship between neurons, synapses and glial cells. In: The visual system: Neurophysiology and psychophysics, edit.R. Jung andH. Kornhuber, pp. 13–24. Berlin: Springer 1961.

    Google Scholar 

  • Smith, D. S., andJ. E. Treherne: Functional aspects of the organization of the insect nervous system. In: Advances in insect physiology, vol. I, ed.J. W. L. Beamont, J. E. Treherne andV. B. Wigglesworth. New York: Academic Press, Inc. 1963.

    Google Scholar 

  • Sokoloff, L.: Local cerebral circulation at rest and during altered cerebral activity induced by anaesthesia or visual stimulation. In: Regional neurochemistry, ed.S. S. Kety andJ. Elkes, pp. 107–117. Oxford: Pergamon Press 1961.

    Google Scholar 

  • ——, andS. S. Kety: Regulation of cerebral circulation. Physiol. Rev., Suppl.4, 38–44 (1960).

    CAS  Google Scholar 

  • Stell, W. K.: Correlation of retinal cytoarchitecture and ultrastructure in Golgi preparations. Anat. Rec.153, 389–397 (1965).

    PubMed  CAS  Google Scholar 

  • Streicher, E.: Thiocyanate space of rat brain. Amer. J. Physiol.201, 334–336 (1961).

    Google Scholar 

  • Svaetichin, G., M. Langer, G. Mitarai, R. Fatehchand, E. Vallecalle, andJ. Villegas: Glial control of neuronal networks and receptors. In: The visual system: Neurophysiology and psychophysics, ed.R. Jung andH. Kornhuber, pp. 445–463. Berlin: Springer 1961.

    Google Scholar 

  • ——, andE. F. MacNichol jr.: Retinal mechanisms for chromatic and achromatic vision. Ann. N.Y. Acad. Sci.74, 385–404 (1958).

    Google Scholar 

  • ——,K. Negishi, R. Fatehchand, B. D. Drujan, andA. Selvin de Testa: Nervous function based on interactions between neuronal and non-neuronal elements. In Progress in brain research. Biology of neuroglia, vol. 15, ed.E. De Robertis andR. Carrea, pp. 1513–1535 Amsterdam: Elsevier Publ. Co. 1965

    Google Scholar 

  • Tasaki, I., andJ. J. Chang: Electric response of glia cells in cat brain. Science128, 1209–1210 (1958).

    PubMed  CAS  Google Scholar 

  • Taxi, J.: Sur la structure des travées du plexus d'Auerbach: confrontation des données fournies par le microscope électronique. Ann. Sci. Nat. Zool., Ser. XII (1959)

  • Tomita, T.: A study on the origin of intraretinal action potential of the cyprinid fish by means of a pencil-type microelectrode. Jap. J. Physiol.7, 80–85 (1957)

    CAS  Google Scholar 

  • Torack, R. M., M. L. Duffy, andJ. M. Haynes: The effect of anisotonic media upon cellular ultrastructure in fish and fixed rat brain. Z. Zellforsch.66, 690–700 (1965).

    PubMed  CAS  Google Scholar 

  • ——,R. D. Terry, andH. M. Zimmermann: The fine structure of cerebral fluid accumulation. Amer. J. Path.36, 273–288 (1960).

    PubMed  CAS  Google Scholar 

  • Treherne, J. E.: The distribution and exchange of some ions and molecules in the central nervous system ofPeriplanets americana L. J. exp. Biol.39, 193–217 (1962a).

    PubMed  CAS  Google Scholar 

  • —— Transfer of substances between the blood and central nervous system in vertebrate and invertebrate animals. Nature (Lond.)196, 1181–1183 (1962b).

    CAS  Google Scholar 

  • Tschirgi, R. D.: Chemical environment of the central nervous system. In: Neurophysiology III. Handbook of physiology, edit.J. Field. Washington, D. C.: Amer. Physiol. Soc. 1960.

    Google Scholar 

  • —— Blood-brain barrier: fact or fancy? Fed. Proc.21, 665–671 (1962).

    PubMed  CAS  Google Scholar 

  • Villegas, G. M., andR. Villegas: Extracellular pathways in the peripheral nerve fibres: Schwann-cell-layer permeability to thorium dioxide. Biochim. biophys. Acts (Amst.)88, 231–233 (1964).

    CAS  Google Scholar 

  • Villegas, R., L. Villegas, M. Gimenez, andG. M. Villegas: Schwann cell and axon electrical potential differences: Squid nerve structure and excitable membrane location. J. gen. Physiol.46, 1047–1064 (1963)

    PubMed  CAS  Google Scholar 

  • Virchow, R.: Cellular pathology as based upon physiological and pathological histology. Translated by F. CHANCE from 2nd edit. ofR. Virchows Cellularpathologie. Berlin: Hirschwald 1859.

    Google Scholar 

  • Waksman, B. H., andR. D. Adams: A histology study of the early lesion in experimental allergic encephalomyelitis in the guinea pig and rabbit. Amer. J. Path.41, 135–162 (1962).

    PubMed  CAS  Google Scholar 

  • Wardell, W. M.: “Dielectric breakdown” as a second mechanism of the electrical response of neuroglia. J. Physiol. (Lond.)175, 52–54P (1964).

    Google Scholar 

  • Weil-Malherbe, H., G. Whitby, andJ. Axelrod: The blood-brain barrier for catecholamines in different regions of the brain. In: Regional neurochemistry, ed.S. S. Kety andJ. Elkes. London: Pergamon Press 1961.

    Google Scholar 

  • Whipple, H. E., ed.: Research in demyelinating diseases. Ann. N.Y. Acad. Sci.122, 1–570 (1965)

  • Wigglesworth, V. B.: The nutrition of the central nervous system in the cockroachPeriplaneta americana L. The role of the perineurimn and glial cells in the mobilization of reserves. J. exp. Biol.37, 500–512 (1960).

    CAS  Google Scholar 

  • Windle, W. F.: Regeneration of axons in the vertebrate central nervous system. Physiol. Rev.36, 427–440 (1956).

    PubMed  CAS  Google Scholar 

  • —— edit.: Biology of neuroglia. Springfield, Ill.: Ch. C. Thomas 1958.

    Google Scholar 

  • Wolfe, D. E.: Electron microscopic observations on the optic nerve of Necturus. (In preparation.)

  • —, andJ. G. Nicholls: The uptake of radioactive glucose and its conversion to glycogen by neurons and glial cells in the central nervous system of the leech (in preparation).

  • Wolff, J.: Beiträge zur Ultrastruktur der Kapillaren in der normalen Großhirnrinde. Z. Zellforsch.60, 409–431 (1963).

    PubMed  CAS  Google Scholar 

  • —— Elektronmikroskopische Untersuchungen dber Struktur und Gestalt von Astrozytenfortsätzen. Z. Zellforsch.66, 811–828 (1965).

    PubMed  CAS  Google Scholar 

  • Wolff, P. H., andR. D. Tschirgi: Inability of cerebrospinal fluid to nourish the spinal cord. Amer. J. Physiol.184, 220–222 (1956).

    PubMed  CAS  Google Scholar 

  • Wyckoff, R. W. G., andJ. Z. Young: The motorneuron surface. Proc. roy. Soc. B144, 440–450 (1956).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 33 Figures

Fellow of the National Multiple Sclerosis Society.

This research was supported by a grant (NB 02253-06) from the National Institutes of Health, Bethesda, Maryland, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuffler, S.W., Nicholls, J.G. The physiology of neuroglial cells. Ergebnisse der Physiologie und exper. Pharmakologie 57, 1–90 (1966). https://doi.org/10.1007/BF02259903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259903

Navigation