Skip to main content

Advertisement

Log in

The Role of Astrocytic Glycogen in Supporting the Energetics of Neuronal Activity

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that grounds a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AK:

Adenylate kinase

AMPK:

AMP-activated protein kinase

CK:

Creatine kinase

HK:

Hexokinase

Glc-6-P:

Glucose 6-phosphate

GP:

Glycogen phosphorylase

GS:

Glycogen synthase

KCC:

K+/Cl cotransporter

NKA:

Na+/K+-adenosine triphosphatase (sodium pump)

NKCC:

Na+/K+/2Cl cotransporter

PFK:

Phosphofructokinase

PKA:

cAMP-dependent protein kinase A

ROS:

Reactive oxygen species

References

  1. Hertz L (1965) Possible role of neuroglia: a potassium-mediated neuronal–neuroglial–neuronal impulse transmission system. Nature 206(989):1091–1094

    Article  PubMed  CAS  Google Scholar 

  2. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249. doi:10.1038/sj.jcbfm.9600343

    Article  PubMed  CAS  Google Scholar 

  3. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145. doi:10.1097/00004647-200110000-00001

    Article  PubMed  CAS  Google Scholar 

  4. Newman EA (1995) Glial cell regulation of extracellular potassium. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 717–731

    Google Scholar 

  5. Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol 522(Pt 3):427–442

    Article  PubMed  CAS  Google Scholar 

  6. Munzer JS, Daly SE, Jewell-Motz EA, Lingrel JB, Blostein R (1994) Tissue- and isoform-specific kinetic behavior of the Na, K-ATPase. J Biol Chem 269(24):16668–16676

    PubMed  CAS  Google Scholar 

  7. Hertz L (1966) Neuroglial localization of potassium and sodium effects on respiration in brain. J Neurochem 13(12):1373–1387

    Article  PubMed  CAS  Google Scholar 

  8. Haljamae H, Hamberger A (1971) Potassium accumulation by bulk prepared neuronal and glial cells. J Neurochem 18(10):1903–1912

    Article  PubMed  CAS  Google Scholar 

  9. Henn FA, Haljamae H, Hamberger A (1972) Glial cell function: active control of extracellular K+ concentration. Brain Res 43(2):437–443

    Article  PubMed  CAS  Google Scholar 

  10. Hajek I, Subbarao KV, Hertz L (1996) Acute and chronic effects of potassium and noradrenaline on Na+, K+-ATPase activity in cultured mouse neurons and astrocytes. Neurochem Int 28(3):335–342

    Article  PubMed  CAS  Google Scholar 

  11. Honegger P, Pardo B (1999) Separate neuronal and glial Na+, K+-ATPase isoforms regulate glucose utilization in response to membrane depolarization and elevated extracellular potassium. J Cereb Blood Flow Metab 19(9):1051–1059. doi:10.1097/00004647-199909000-00013

    Article  PubMed  CAS  Google Scholar 

  12. Grisar T, Frere JM, Franck G (1979) Effect of K+ ions on kinetic properties of the (Na+, K+)-ATPase (EC 3.6.1.3) of bulk isolated glial cells, perikarya and synaptosomes from rabbit brain cortex. Brain Res 165(1):87–103

    Article  PubMed  CAS  Google Scholar 

  13. Mercado R, Hernandez J (1992) Regulatory role of a neurotransmitter (5-HT) on glial Na+/K(+)-ATPase in the rat brain. Neurochem Int 21(1):119–127

    Article  PubMed  CAS  Google Scholar 

  14. Walz W, Hinks EC (1986) A transmembrane sodium cycle in astrocytes. Brain Res 368(2):226–232

    Article  PubMed  CAS  Google Scholar 

  15. Walz W (2000) Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int 36(4–5):291–300. doi:S0197-0186(99)00137-0

    Article  PubMed  CAS  Google Scholar 

  16. Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci 30(47):15769–15777. doi:10.1523/JNEUROSCI.2078-10.2010

    Article  PubMed  CAS  Google Scholar 

  17. Dufour S, Dufour P, Chever O, Vallee R, Amzica F (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194(2):206–217. doi:10.1016/j.jneumeth.2010.10.004

    Article  PubMed  CAS  Google Scholar 

  18. Somjen GG, Kager H, Wadman WJ (2008) Computer simulations of neuron-glia interactions mediated by ion flux. J Comput Neurosci 25(2):349–365. doi:10.1007/s10827-008-0083-9

    Article  PubMed  CAS  Google Scholar 

  19. Phelps CH (1972) Barbiturate-induced glycogen accumulation in brain. An electron microscopic study. Brain Res 39(1):225–234

    Article  PubMed  CAS  Google Scholar 

  20. Pfeiffer-Guglielmi B, Fleckenstein B, Gn Jung, Hamprecht B (2003) Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J Neurochem 85(1):73–81

    Article  PubMed  CAS  Google Scholar 

  21. DiNuzzo M, Maraviglia B, Giove F (2011) Why does the brain (not) have glycogen? BioEssays 33(5):319–326. doi:10.1002/bies.201000151

    Article  PubMed  CAS  Google Scholar 

  22. Quach TT, Rose C, Schwartz JC (1978) [3H]Glycogen hydrolysis in brain slices: responses to neurotransmitters and modulation of noradrenaline receptors. J Neurochem 30(6):1335–1341

    Article  PubMed  CAS  Google Scholar 

  23. Magistretti PJ, Morrison JH, Shoemaker WJ, Bloom FE (1983) Effect of 6-hydroxydopamine lesions on norepinephrine-induced [3H] glycogen hydrolysis in mouse cortical slices. Brain Res 261(1):159–162

    Article  PubMed  CAS  Google Scholar 

  24. Ververken D, Van Veldhoven P, Proost C, Carton H, De Wulf H (1982) On the role of calcium ions in the regulation of glycogenolysis in mouse brain cortical slices. J Neurochem 38(5):1286–1295

    Article  PubMed  CAS  Google Scholar 

  25. Pentreath VW, Kai–Kai MA (1982) Significance of the potassium signal from neurones to glial cells. Nature 295(5844):59–61

    Article  PubMed  CAS  Google Scholar 

  26. Cambray-Deakin M, Pearce B, Morrow C, Murphy S (1988) Effects of extracellular potassium on glycogen stores of astrocytes in vitro. J Neurochem 51(6):1846–1851

    Article  PubMed  CAS  Google Scholar 

  27. Subbarao KV, Stolzenburg JU, Hertz L (1995) Pharmacological characteristics of potassium-induced, glycogenolysis in astrocytes. Neurosci Lett 196(1–2):45–48

    Article  PubMed  CAS  Google Scholar 

  28. Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci 8(6):1922–1928

    PubMed  CAS  Google Scholar 

  29. Su G, Haworth RA, Dempsey RJ, Sun D (2000) Regulation of Na(+)-K(+)-Cl(−) cotransporter in primary astrocytes by dibutyryl cAMP and high [K(+)](o). Am J Physiol Cell Physiol 279(6):C1710–1721

    PubMed  CAS  Google Scholar 

  30. Vaughan H, Thornton SD, Newsholme EA (1973) The effects of calcium ions on the activities of trehalase, hexokinase, phosphofructokinase, fructose diphosphatase and pyruvate kinase from various muscles. Biochem J 132(3):527–535

    PubMed  CAS  Google Scholar 

  31. Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144

    Article  PubMed  CAS  Google Scholar 

  32. Dienel GA, Cruz NF (2006) Astrocyte activation in working brain: energy supplied by minor substrates. Neurochem Int 48(6–7):586–595. doi:10.1016/j.neuint.2006.01.004

    Article  PubMed  CAS  Google Scholar 

  33. Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51(2):451–461

    Article  PubMed  CAS  Google Scholar 

  34. Dienel GA, Ball KK, Cruz NF (2007) A glycogen phosphorylase inhibitor selectively enhances local rates of glucose utilization in brain during sensory stimulation of conscious rats: implications for glycogen turnover. J Neurochem 102(2):466–478

    Article  PubMed  CAS  Google Scholar 

  35. Brown AM, Baltan Tekkok S, Ransom BR (2004) Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int 45(4):529–536. doi:10.1016/j.neuint.2003.11.005

    Article  PubMed  CAS  Google Scholar 

  36. Hertz L, Gibbs ME (2009) What learning in day-old chickens can teach a neurochemist: focus on astrocyte metabolism. J Neurochem 109(Suppl 1):10–16. doi:10.1111/j.1471-4159.2009.05939.x

    Article  PubMed  CAS  Google Scholar 

  37. Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry P-G, Moortele P-FVD, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292(3):E946–E951

    Article  PubMed  CAS  Google Scholar 

  38. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(12):1895–1904. doi:10.1038/jcbfm.2010.151

    Article  PubMed  CAS  Google Scholar 

  39. Walz W (2004) Potassium homeostasis in the brain at the organ and cell level. In: Hertz L (ed) Non-neuronal cells of the nervous system: function and dysfunction. Elsevier, Amsterdam, pp 595–609

    Google Scholar 

  40. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(3):586–602. doi:10.1038/jcbfm.2009.232

    Article  PubMed  CAS  Google Scholar 

  41. Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791. doi:10.1038/sj.jcbfm.9600521

    Article  PubMed  CAS  Google Scholar 

  42. Walls AB, Heimburger CM, Bouman SD, Schousboe A, Waagepetersen HS (2009) Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience 158(1):284–292. doi:10.1016/j.neuroscience.2008.09.058

    Article  PubMed  CAS  Google Scholar 

  43. Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci USA 98(11):6417–6422. doi:10.1073/pnas.101129298

    Article  PubMed  CAS  Google Scholar 

  44. Mangia S, Giove F, Tkac I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Ugurbil K (2009) Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 29(3):441–463. doi:10.1038/jcbfm.2008.134

    Article  PubMed  CAS  Google Scholar 

  45. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305(5680):99–103. doi:10.1126/science.1096485

    Article  PubMed  CAS  Google Scholar 

  46. Pancani T, Anderson KL, Porter NM, Thibault O (2011) Imaging of a glucose analog, calcium and NADH in neurons and astrocytes: dynamic responses to depolarization and sensitivity to pioglitazone. Cell Calcium 50(6):548–558. doi:10.1016/j.ceca.2011.09.002

    Article  PubMed  CAS  Google Scholar 

  47. Hu Y, Wilson GS (1997) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69(4):1484–1490

    Article  PubMed  CAS  Google Scholar 

  48. Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B (2003) The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 118(1):7–10. doi:S0306452202007923

    Article  PubMed  CAS  Google Scholar 

  49. Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20(1):144–160

    Article  PubMed  Google Scholar 

  50. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    PubMed  CAS  Google Scholar 

  51. Ellington WR (2001) Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63:289–325. doi:10.1146/annurev.physiol.63.1.289

    Article  PubMed  CAS  Google Scholar 

  52. da-Silva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, de Felice FG, de Felice FG, de Meis L, Oliveira MF, Galina A (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279(38):39846–39855. doi:10.1074/jbc.M403835200

    Article  PubMed  CAS  Google Scholar 

  53. Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O, Oliveira MF, Galina A (2006) Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem 281(49):37361–37371. doi:10.1074/jbc.M604123200

    Article  PubMed  CAS  Google Scholar 

  54. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057

    Article  PubMed  CAS  Google Scholar 

  55. Beattie DS, Sloan HR, Basford RE (1963) Brain mitochondria. II. The relationship of brain mitochondria to glycolysis. J Cell Biol 19:309–316

    Article  PubMed  CAS  Google Scholar 

  56. Vallejo CG, Marco R, Sebastian J (1970) The association of brain hexokinase with mitochondrial membranes and its functional implications. Eur J Biochem 14(3):478–485

    Article  PubMed  CAS  Google Scholar 

  57. Land JM, Booth RF, Berger R, Clark JB (1977) Development of mitochondrial energy metabolism in rat brain. Biochem J 164(2):339–348

    PubMed  CAS  Google Scholar 

  58. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11(3):281–295

    PubMed  Google Scholar 

  59. Bolanos JP, Almeida A (2010) The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62(1):14–18. doi:10.1002/iub.280

    PubMed  CAS  Google Scholar 

  60. Dienel GA (2010) Astrocytes are ‘good scouts’: being prepared also helps neighboring neurons. J Cereb Blood Flow Metab 30(12):1893–1894. doi:10.1038/jcbfm.2010.152

    Article  PubMed  Google Scholar 

  61. Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA, Vannucci SJ (2011) Response to ‘comment on recent modeling studies of astrocyte-neuron metabolic interactions’: much ado about nothing. J Cereb Blood Flow Metab 31(6):1346–1353. doi:10.1038/jcbfm.2011.29

    Article  PubMed  CAS  Google Scholar 

  62. Ball S, Colleoni C, Cenci U, Raj JN, Tirtiaux C (2011) The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J Exp Bot 62(6):1775–1801. doi:10.1093/jxb/erq411

    Article  PubMed  CAS  Google Scholar 

  63. Hudson JW, Golding GB, Crerar MM (1993) Evolution of allosteric control in glycogen phosphorylase. J Mol Biol 234(3):700–721. doi:10.1006/jmbi.1993.1621

    Article  PubMed  CAS  Google Scholar 

  64. Hudson JW, Hefferon KL, Crerar MM (1993) Comparative analysis of species-independent, isozyme-specific amino-acid substitutions in mammalian muscle, brain and liver glycogen phosphorylases. Biochim Biophys Acta 1164(2):197–208

    Article  PubMed  CAS  Google Scholar 

  65. Roach PJ (2002) Glycogen and its metabolism. Curr Mol Med 2(2):101–120

    Article  PubMed  CAS  Google Scholar 

  66. Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 36(9):470–477. doi:10.1016/j.tibs.2011.06.004

    Article  PubMed  CAS  Google Scholar 

  67. Field ML, Khan O, Abbaraju J, Clark JF (2006) Functional compartmentation of glycogen phosphorylase with creatine kinase and Ca2+ ATPase in skeletal muscle. J Theor Biol 238(2):257–268. doi:10.1016/j.jtbi.2005.05.017

    Article  PubMed  CAS  Google Scholar 

  68. Khakimova AK, Skolysheva LK, Shur SA, Vul’fson IL (1995) Interaction between glycogen phosphorylase b and creatinine kinase from rabbit skeletal muscle. Biokhimiia 60(2):278–288

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous referees for valuable comments and constructive suggestions to the manuscript. The author S. Mangia thanks the funding supports: Minnesota Medical Foundation, NIH grants BTRR-P41RR008079, P30 NS057091, NIH R01 DK62440. This publication was also supported by the NIH grant 1UL1RR033183 from the National Center for Research Resources (NCRR) to the University of Minnesota Clinical and Translational Science Institute (CTSI). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the CTSI or the NIH.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro DiNuzzo.

Additional information

Special Issue: In Honor of Leif Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiNuzzo, M., Mangia, S., Maraviglia, B. et al. The Role of Astrocytic Glycogen in Supporting the Energetics of Neuronal Activity. Neurochem Res 37, 2432–2438 (2012). https://doi.org/10.1007/s11064-012-0802-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0802-5

Keywords

Navigation