Skip to main content
Log in

Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In addition to being an amino acid that is incorporated into proteins, glutamate is the most abundant neurotransmitter in the mammalian CNS, the precursor for the inhibitory neurotransmitter γ-aminobutyric acid, and one metabolic step from the tricarboxylic acid cycle intermediate α-ketoglutarate. Extracellular glutamate is cleared by a family of Na+-dependent transporters. These transporters are variably expressed by all cell types in the nervous system, but the bulk of clearance is into astrocytes. GLT-1 and GLAST (also called EAAT2 and EAAT1) mediate this activity and are extremely abundant proteins with their expression enriched in fine astrocyte processes. In this review, we will focus on three topics related to these astrocytic glutamate transporters. First, these transporters co-transport three Na+ ions and a H+ with each molecule of glutamate and counter-transport one K+; they are also coupled to a Cl conductance. The movement of Na+ is sufficient to cause profound astrocytic depolarization, and the movement of H+ is linked to astrocytic acidification. In addition, the movement of Na+ can trigger the activation of Na+ co-transporters (e.g. Na+–Ca2+ exchangers). We will describe the ways in which these ionic movements have been linked as signals to brain function and/or metabolism. Second, these transporters co-compartmentalize with mitochondria, potentially providing a mechanism to supply glutamate to mitochondria as a source of fuel for the brain. We will provide an overview of the proteins involved, discuss the evidence that glutamate is oxidized, and then highlight some of the un-resolved issues related to glutamate oxidation. Finally, we will review evidence that ischemic insults (stroke or oxygen/glucose deprivation) cause changes in these astrocytic mitochondria and discuss the ways in which these changes have been linked to glutamate transport, glutamate transport-dependent signaling, and altered glutamate metabolism. We conclude with a broader summary of some of the unresolved issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Robinson MB, Coyle JT (1987) Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. FASEB J 1:446–455

    CAS  PubMed  Google Scholar 

  2. Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons are glial cells. Int Rev Neurobiol 22:1–45

    CAS  PubMed  Google Scholar 

  3. Bowery NG, Smart TG (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 147(Suppl 1):S109–S119

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ellison DW, Beal MF, Martin JB (1987) Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection. J Neurosci Methods 19:305–315

    CAS  PubMed  Google Scholar 

  5. Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, Shulman RG, Tamborlane WV (1992) Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci USA 89:1109–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    CAS  PubMed  Google Scholar 

  7. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    CAS  PubMed  Google Scholar 

  8. Greene JG, Greenamyre JT (1996) Bioenergetics and glutamate excitotoxicity. Prog Neurobiol 48:613–634

    CAS  PubMed  Google Scholar 

  9. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    CAS  PubMed  Google Scholar 

  10. Olney J (2003) Excitotoxicity, apoptosis and neuropsychaitric disorders. Curr Opin Pharm 3:101–109

    CAS  Google Scholar 

  11. Timmerman W, Westerink BHC (1997) Brain microdialysis of GABA amd glutamate: what does it signify? Synapse 27:242–261

    CAS  PubMed  Google Scholar 

  12. Miele M, Berners M, Boutelle MG, Kusakabe H, Fillenz M (1996) The determination of the extracellular concentration of brain glutamate using quantitative microdialysis. Brain Res 707:131–133

    CAS  PubMed  Google Scholar 

  13. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Herman MA, Nahir B, Jahr CE (2011) Distribution of extracellular glutamate in the neuropil of hippocampus. PLoS ONE 6:e26501

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiu DN, Jahr CE (2017) Extracellular glutamate in the nucleus accumbens is nanomolar in both synaptic and non-synaptic compartments. Cell Rep 18:2576–2583

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    CAS  PubMed  Google Scholar 

  17. Sims KD, Robinson MB (1999) Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit Rev Neurobiol 13:169–197

    CAS  PubMed  Google Scholar 

  18. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  19. Slotboom DJ, Konings WN, Lolkema JS (2001) Glutamate transporters combine transporter- and channel-like features. Trends Biochem Sci 26:534–539

    CAS  PubMed  Google Scholar 

  20. Huang YH, Bergles DE (2004) Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol 14:346–352

    CAS  PubMed  Google Scholar 

  21. Beart PM, O’Shea RD (2007) Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 150:5–17

    CAS  PubMed  Google Scholar 

  22. Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602

    CAS  PubMed  Google Scholar 

  24. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947

    CAS  PubMed  Google Scholar 

  25. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    CAS  PubMed  Google Scholar 

  26. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I, Methner A, Pergande M, Smith SB, Ganapathy V, Maher P (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signaling 18:522–555

    CAS  Google Scholar 

  27. Murphy-Royal C, Dupuis J, Groc L, Oliet SHR (2017) Astroglial glutamate transporters in the brain: regulating neurotransmitter homeostasis and synaptic transmission. J Neurosci Res 95:2140–2151

    CAS  PubMed  Google Scholar 

  28. Chen W, Aoki C, Mahadomrongkul V, Gruber CE, Wang GJ, Blitzblau R, Irwin N, Rosenberg PA (2002) Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. J Neurosci 22:2142–2152

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Petr GT, Sun Y, Frederick NM, Zhou Y, Dhamne SC, Hameed MQ, Miranda C, Bedoya EA, Fischer KD, Armsen W, Wang J, Danbolt NC, Rotenberg A, Aoki CJ, Rosenberg PA (2015) Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 35:5187–5201

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Danbolt NC, Pines G, Kanner BI (1990) Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry 29:6734–6740

    CAS  PubMed  Google Scholar 

  31. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    CAS  PubMed  Google Scholar 

  32. Conti F, Weinberg RJ (1999) Shaping excitation at glutamatergic synapses. Trends Neurosci 22:451–458

    CAS  PubMed  Google Scholar 

  33. Conn PJ, Patel J (1994) The metabotropic glutamate receptors. Humana Press, Totowa

    Google Scholar 

  34. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504

    CAS  PubMed  Google Scholar 

  35. Hollman M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Google Scholar 

  36. Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603

    CAS  PubMed  Google Scholar 

  37. Nakanishi S (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13:1031–1037

    CAS  PubMed  Google Scholar 

  38. Nicolletti F, Bruno V, Capani A, Casabona G, Knöpfel T (1996) Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19:267–271

    Google Scholar 

  39. Pin J-P, Duvoisin R (1995) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 14:1–26

    Google Scholar 

  40. Wadiche JI, Arriza JL, Amara SG, Kavanaugh MP (1995) Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    CAS  PubMed  Google Scholar 

  41. Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–1308

    CAS  PubMed  Google Scholar 

  42. Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659

    CAS  PubMed  Google Scholar 

  43. Mennerick S, Zorumski CF (1994) Glial contribution to excitatory neurotransmission in cultured hippocampal cells. Nature 368:59–62

    CAS  PubMed  Google Scholar 

  44. Bellot-Saez A, Kekesi O, Morley JW, Buskila Y (2017) Astrocytic modulation of neuronal excitability through K(+) spatial buffering. Neurosci Biobehav Rev 77:87–97

    CAS  PubMed  Google Scholar 

  45. Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535

    CAS  PubMed  Google Scholar 

  46. Rose CR, Ransom BR (1996) Mechanisms of H + and Na + changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16:5393–5404

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Langer J, Rose CR (2009) Synaptically induced sodium signals in hippocampal astrocytes in situ. J Physiol 587:5859–5877

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Langer J, Gerkau NJ, Derouiche A, Kleinhans C, Moshrefi-Ravasdjani B, Fredrich M, Kafitz KW, Seifert G, Steinhauser C, Rose CR (2017) Rapid sodium signaling couples glutamate uptake to breakdown of ATP in perivascular astrocyte endfeet. Glia 65:293–308

    PubMed  Google Scholar 

  49. Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C (2017) Astroglial glutamate signaling and uptake in the hippocampus. Front Mol Neurosci 10:451

    PubMed  Google Scholar 

  50. Ziemens D, Oschmann F, Gerkau NJ, Rose CR (2019) Heterogeneity of activity-induced sodium transients between astrocytes of the mouse hippocampus and neocortex: mechanisms and consequences. J Neurosci 39:2620–2634

    PubMed  PubMed Central  Google Scholar 

  51. Unichenko P, Myakhar O, Kirischuk S (2012) Intracellular Na + concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes. Glia 60:605–614

    PubMed  Google Scholar 

  52. Bernardinelli Y, Magistretti PJ, Chatton JY (2004) Astrocytes generate Na + -mediated metabolic waves. Proc Natl Acad Sci USA 101:14937–14942

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Porras OH, Ruminot I, Loaiza A, Barros LF (2008) Na(+)-Ca(2 +) cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia 56:59–68

    PubMed  Google Scholar 

  54. Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V, Sotelo-Hitschfeld T, Moldenhauer H, San Martin A, Gutierrez R, Zambrano M, Barros LF (2011) Fast and reversible stimulation of astrocytic glycolysis by k + and a delayed and persistent effect of glutamate. J Neurosci 31:4709–4713

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, Kaelin V, Zuend M, San Martin A, Romero-Gomez I, Baeza-Lehnert F, Lengacher S, Schneider BL, Aebischer P, Magistretti PJ, Barros LF, Weber B (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23:94–102

    CAS  PubMed  Google Scholar 

  56. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G (2017) Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab 26(361–374):e364

    Google Scholar 

  58. Gramsbergen JB, Leegsma-Vogt G, Venema K, Noraberg J, Korf J (2003) Quantitative on-line monitoring of hippocampus glucose and lactate metabolism in organotypic cultures using biosensor technology. J Neurochem 85:399–408

    CAS  PubMed  Google Scholar 

  59. Hertz L, Swanson RA, Newman GC, Marrif H, Juurlink BH, Peng L (1998) Can experimental conditions explain the discrepancy over glutamate stimulation of aerobic glycolysis? Dev Neurosci 20:339–347

    CAS  PubMed  Google Scholar 

  60. Peng L, Swanson RA, Hertz L (2001) Effects of L-glutamate, D-aspartate, and monensin on glycolytic and oxidative glucose metabolism in mouse astrocyte cultures: further evidence that glutamate uptake is metabolically driven by oxidative metabolism. Neurochem Int 38:437–443

    CAS  PubMed  Google Scholar 

  61. Swanson RA, Yu AC, Chan PH, Sharp FR (1990) Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte culture. J Neurochem 54:490–496

    CAS  PubMed  Google Scholar 

  62. Kohler S, Winkler U, Sicker M, Hirrlinger J (2018) NBCe1 mediates the regulation of the NADH/NAD(+) redox state in cortical astrocytes by neuronal signals. Glia 66:2233–2245

    PubMed  Google Scholar 

  63. Rojas H, Colina C, Ramos M, Benaim G, Jaffe EH, Caputo C, DiPolo R (2007) Na + entry via glutamate transporter activates the reverse Na +/Ca2 + exchange and triggers Ca(i)2 + -induced Ca2 + release in rat cerebellar Type-1 astrocytes. J Neurochem 100:1188–1202

    CAS  PubMed  Google Scholar 

  64. Rojas H, Colina C, Ramos M, Benaim G, Jaffe E, Caputo C, Di Polo R (2013) Sodium-calcium exchanger modulates the L-glutamate Ca(i) (2 +) signalling in type-1 cerebellar astrocytes. Adv Exp Med Biol 961:267–274

    CAS  PubMed  Google Scholar 

  65. Parpura V, Sekler I, Fern R (2016) Plasmalemmal and mitochondrial Na(+) -Ca(2 +) exchange in neuroglia. Glia 64:1646–1654

    PubMed  Google Scholar 

  66. Jackson JG, Robinson MB (2015) Reciprocal regulation of mitochondrial dynamics and calcium signaling in astrocyte processes. J Neurosci 35:15199–15213

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ibanez I, Bartolome-Martin D, Piniella D, Gimenez C, Zafra F (2019) Activity dependent internalization of the glutamate transporter GLT-1 requires calcium entry through the NCX sodium/calcium exchanger. Neurochem Int 123:125–132

    CAS  PubMed  Google Scholar 

  68. Martinez-Lozada Z, Waggener CT, Kim K, Zou S, Knapp PE, Hayashi Y, Ortega A, Fuss B (2014) Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin-dependent kinase IIbeta’s actin-binding/-stabilizing domain. Glia 62:1543–1558

    PubMed  PubMed Central  Google Scholar 

  69. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    CAS  PubMed  Google Scholar 

  70. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Marchaland J, Cali C, Voglmaier SM, Li H, Regazzi R, Edwards RH, Bezzi P (2008) Fast subplasma membrane Ca2 + transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28:9122–9132

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Guthrie PB, Knappenberger J, Segal M, Bennett MV, Charles AC, Kater SB (1999) ATP released from astrocytes mediates glial calcium waves. J Neurosci 19:520–528

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    CAS  PubMed  Google Scholar 

  74. Petzold GC, Murthy VN (2011) Role of astrocytes in neurovascular coupling. Neuron 71:782–797

    CAS  PubMed  Google Scholar 

  75. Robinson MB, Jackson JG (2016) Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 98:56–71

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29:8143–8155

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2011) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31:18275–18288

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bernardinelli Y, Azarias G, Chatton JY (2006) In situ fluorescence imaging of glutamate-evoked mitochondrial Na + responses in astrocytes. Glia 54:460–470

    PubMed  Google Scholar 

  79. Azarias G, Van de Ville D, Unser M, Chatton JY (2008) Spontaneous NA + transients in individual mitochondria of intact astrocytes. Glia 56:342–353

    PubMed  Google Scholar 

  80. Jackson JG, O’Donnell JC, Takano H, Coulter DA, Robinson MB (2014) Neuronal activity and glutamate uptake decrease mitochondrial mobility in astrocytes and position mitochondria near glutamate transporters. J Neurosci 34:1613–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mim C, Balani P, Rauen T, Grewer C (2005) The glutamate transporter subtypes EAAT4 and EAATs 1-3 transport glutamate with dramatically different kinetics and voltage dependence but share a common uptake mechanism. J Gen Physiol 126:571–589

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino acid transporter with properties of a ligand-gated chloride channel. Nat (Lond) 375:599–603

    CAS  Google Scholar 

  83. Kataoka Y, Morii H, Watanabe Y, Ohmori H (1997) A postsynaptic excitatory amino acid chloride conductance functionally regulated by neuronal activity in cerebellar purkinje cells. J Neurosci 17:7017–7024

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606–3619

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Otis TS, Jahr CE (1998) Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci 18:7099–7110

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Picaud S, Larsson HP, Wellis DP, Lecar H, Werblin F (1995) Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc Natl Acad Sci USA 92:9417–9421

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Veruki ML, Morkve SH, Hartveit E (2006) Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nat Neurosci 9:1388–1396

    CAS  PubMed  Google Scholar 

  89. Wersinger E, Schwab Y, Sahel JA, Rendon A, Pow DV, Picaud S, Roux MJ (2006) The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol 577:221–234

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15:721–728

    CAS  PubMed  Google Scholar 

  91. Divito CB, Borowski JE, Glasgow NG, Gonzalez-Suarez AD, Torres-Salazar D, Johnson JW, Amara SG (2017) Glial and neuronal glutamate transporters differ in the Na(+) requirements for activation of the substrate-independent anion conductance. Front Mol Neurosci 10:150

    PubMed  PubMed Central  Google Scholar 

  92. Untiet V, Kovermann P, Gerkau NJ, Gensch T, Rose CR, Fahlke C (2017) Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation. Glia 65:388–400

    PubMed  Google Scholar 

  93. Robinson MB (1999) The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int 33:479–491

    Google Scholar 

  94. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    CAS  PubMed  Google Scholar 

  96. Minelli A, Barbaresi P, Reimer RJ, Edwards RH, Conti F (2001) The glial glutamate transporter GLT-1 is localized both in the vicinity of and at distance from axon terminals in the rat cerebral cortex. Neuroscience 108:51–59

    CAS  PubMed  Google Scholar 

  97. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283:13482–13490

    CAS  PubMed  Google Scholar 

  98. Zaid H, Talior-Volodarsky I, Antonescu C, Liu Z, Klip A (2009) GAPDH binds GLUT4 reciprocally to hexokinase-II and regulates glucose transport activity. Biochem J 419:475–484

    CAS  PubMed  Google Scholar 

  99. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262

    PubMed  Google Scholar 

  100. Allaman I, Belanger M, Magistretti PJ (2011) Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci 34:76–87

    CAS  PubMed  Google Scholar 

  101. Mugnaini E (1964) Helical filaments in astrocytic mitochondria of the corpus striatum in the rat. J Cell Biol 23:173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Pysh JJ, Khan T (1972) Variations in mitochondrial structure and content of neurons and neuroglia in rat brain: an electron microscopic study. Brain Res 36:1–18

    CAS  PubMed  Google Scholar 

  103. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    CAS  PubMed  Google Scholar 

  105. Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB (2012) The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int 61:566–574

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Stephen TL, Gupta-Agarwal S, Kittler JT (2014) Mitochondrial dynamics in astrocytes. Biochem Soc Trans 42:1302–1310

    CAS  PubMed  Google Scholar 

  107. Ugbode CI, Hirst WD, Rattray M (2014) Neuronal influences are necessary to produce mitochondrial co-localization with glutamate transporters in astrocytes. J Neurochem 130:668–677

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Benjamin Kacerovsky J, Murai KK (2016) Stargazing: monitoring subcellular dynamics of brain astrocytes. Neuroscience 323:84–95

    CAS  PubMed  Google Scholar 

  109. Derouiche A, Haseleu J, Korf HW (2015) Fine astrocyte processes contain very small mitochondria: glial oxidative capability may fuel transmitter metabolism. Neurochem Res 40:2402–2413

    CAS  PubMed  Google Scholar 

  110. Stephen TL, Higgs NF, Sheehan DF, Al Awabdh S, Lopez-Domenech G, Arancibia-Carcamo IL, Kittler JT (2015) Miro1 regulates activity-driven positioning of mitochondria within astrocytic processes apposed to synapses to regulate intracellular calcium signaling. J Neurosci 35:15996–16011

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Agarwal A, Wu PH, Hughes EG, Fukaya M, Tischfield MA, Langseth AJ, Wirtz D, Bergles DE (2017) Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93(587–605):e587

    Google Scholar 

  112. Gobel J, Motori E, Bergami M (2018) Spatiotemporal control of mitochondrial network dynamics in astroglial cells. Biochem Biophys Res Commun 500:17–25

    PubMed  Google Scholar 

  113. Jackson JG, Robinson MB (2018) Regulation of mitochondrial dynamics in astrocytes: mechanisms, consequences, and unknowns. Glia 66:1213–1234

    PubMed  Google Scholar 

  114. McNair LF, Andersen JV, Aldana BI, Hohnholt MC, Nissen JD, Sun Y, Fischer KD, Sonnewald U, Nyberg N, Webster SC, Kapur K, Rimmele TS, Barone I, Hawks-Mayer H, Lipton JO, Hodgson NW, Hensch TK, Aoki CJ, Rosenberg PA, Waagepetersen HS (2019) Deletion of neuronal GLT-1 in mice reveals its role in synaptic glutamate homeostasis and mitochondrial function. J Neurosci 39:4847–4863

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Hertz L (2013) The glutamate-glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front Endocrinol 4:59

    CAS  Google Scholar 

  116. Hertz L, Chen Y (2017) Integration between glycolysis and glutamate-glutamine cycle flux may explain preferential glycolytic increase during brain activation, requiring glutamate. Front Integr Neurosci 11:18

    PubMed  PubMed Central  Google Scholar 

  117. Chaudhry FA, Reimer RJ, Edwards RH (2002) The glutamine commute: take the N line and transfer to the A. J Cell Biol 157:349–355

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kam K, Nicoll R (2007) Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J Neurosci 27:9192–9200

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ (2014) A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81:888–900

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Varoqui H, Zhu H, Yao D, Ming H, Erickson JD (2000) Cloning and functional identification of a neuronal glutamine transporter. J Biol Chem 275:4049–4054

    CAS  PubMed  Google Scholar 

  121. Erickson JD (2017) Functional identification of activity-regulated, high-affinity glutamine transport in hippocampal neurons inhibited by riluzole. J Neurochem 142:29–40

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Runswick MJ, Walker JE, Bisaccia F, Iacobazzi V, Palmieri F (1990) Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relationship to other mitochondrial transport proteins. Biochemistry 29:11033–11040

    CAS  PubMed  Google Scholar 

  123. Pardo B, Rodrigues TB, Contreras L, Garzon M, Llorente-Folch I, Kobayashi K, Saheki T, Cerdan S, Satrustegui J (2011) Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J Cereb Blood Flow Metab 31:90–101

    CAS  PubMed  Google Scholar 

  124. Hertz L (2011) Brain glutamine synthesis requires neuronal aspartate: a commentary. J Cereb Blood Flow Metab 31:384–387

    CAS  PubMed  Google Scholar 

  125. Li B, Hertz L, Peng L (2012) Aralar mRNA and protein levels in neurons and astrocytes freshly isolated from young and adult mouse brain and in maturing cultured astrocytes. Neurochem Int 61:1325–1332

    CAS  PubMed  Google Scholar 

  126. McKenna MC, Stridh MH, McNair LF, Sonnewald U, Waagepetersen HS, Schousboe A (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571

    CAS  PubMed  Google Scholar 

  127. Hertz L, Rothman DL (2017) Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology (Basel) 6:17

    Google Scholar 

  128. Karaca M, Frigerio F, Migrenne S, Martin-Levilain J, Skytt DM, Pajecka K, Martin-Del-Rio R, Gruetter R, Tamarit-Rodriguez J, Waagepetersen HS, Magnan C, Maechler P (2015) GDH-dependent glutamate oxidation in the brain dictates peripheral energy substrate distribution. Cell Rep 13:365–375

    CAS  PubMed  Google Scholar 

  129. Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63:244–258

    CAS  PubMed  PubMed Central  Google Scholar 

  130. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191

    Google Scholar 

  131. Dienel GA, McKenna MC (2014) A dogma-breaking concept: glutamate oxidation in astrocytes is the source of lactate during aerobic glycolysis in resting subjects. J Neurochem 131:395–398

    CAS  PubMed  Google Scholar 

  132. Juaristi I, Llorente-Folch I, Satrustegui J, Del Arco A (2019) Extracellular ATP and glutamate drive pyruvate production and energy demand to regulate mitochondrial respiration in astrocytes. Glia 67:759–774

    PubMed  Google Scholar 

  133. Tiwari V, Ambadipudi S, Patel AB (2013) Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain. J Cereb Blood Flow Metab 33:1523–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lanz B, Xin L, Millet P, Gruetter R (2014) In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T. J Neurochem 128:125–139

    CAS  PubMed  Google Scholar 

  135. Sonnay S, Gruetter R, Duarte JMN (2017) How energy metabolism supports cerebral function: insights from (13)C magnetic resonance studies in vivo. Front Neurosci 11:288

    PubMed  PubMed Central  Google Scholar 

  136. McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    CAS  PubMed  Google Scholar 

  137. Torres FV, Hansen F, Locks-Coelho LD (2013) Increase of extracellular glutamate concentration increases its oxidation and diminishes glucose oxidation in isolated mouse hippocampus: reversible by TFB-TBOA. J Neurosci Res 91:1059–1065

    CAS  PubMed  Google Scholar 

  138. Goubert E, Mircheva Y, Lasorsa FM, Melon C, Profilo E, Sutera J, Becq H, Palmieri F, Palmieri L, Aniksztejn L, Molinari F (2017) Inhibition of the mitochondrial glutamate carrier SLC25A22 in astrocytes leads to intracellular glutamate accumulation. Front Cell Neurosci 11:149

    PubMed  PubMed Central  Google Scholar 

  139. Rothman DL, De Feyter HM, de Graaf RA, Mason GF, Behar KL (2011) 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed 24:943–957

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Yu AC, Drejer J, Hertz L, Schousboe A (1983) Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J Neurochem 41:1484–1487

    CAS  PubMed  Google Scholar 

  141. Shank RP, Bennett GS, Freytag SO, Campbell GL (1985) Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res 329:364–367

    CAS  PubMed  Google Scholar 

  142. Sonnewald U (2014) Glutamate synthesis has to be matched by its degradation: where do all the carbons go? J Neurochem 131:399–406

    CAS  PubMed  Google Scholar 

  143. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17:932–940

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Schlag BD, Vondrasek JR, Munir M, Kalandadze A, Zelenaia OA, Rothstein JD, Robinson MB (1998) Regulation of the glial Na+-dependent glutamate transporters by cyclic AMP analogs and neurons. Mol Pharmacol 53:355–369

    CAS  PubMed  Google Scholar 

  146. Lee ML, Martinez-Lozada Z, Krizman EN, Robinson MB (2017) Brain endothelial cells induce astrocytic expression of the glutamate transporter GLT-1 by a Notch-dependent mechanism. J Neurochem 143:489–506

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Markus NM, McQueen J, Hampton DW, Torvell M, Tiwari SS, McKay S, Eraso-Pichot A, Zorzano A, Masgrau R, Galea E, Chandran S, Wyllie DJA, Simpson TI, Hardingham GE (2017) Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8:15132

    PubMed  PubMed Central  Google Scholar 

  148. Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of astrocytes. J Neurosci 35:10460–10473

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787:1309–1316

    CAS  PubMed  Google Scholar 

  150. Denton RM, McCormack JG (1980) The role of calcium in the regulation of mitochondrial metabolism. Biochem Soc Trans 8:266–268

    CAS  PubMed  Google Scholar 

  151. Denton RM, McCormack JG (1985) Physiological role of Ca2 + transport by mitochondria. Nature 315:635

    CAS  PubMed  Google Scholar 

  152. Denton RM, McCormack JG, Edgell NJ (1980) Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na + , Mg2 + and ruthenium red on the Ca2 + -stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Biochem J 190:107–117

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128:161–163

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Denton RM, Richards DA, Chin JG (1978) Calcium ions and the regulation of NAD + -linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 176:899–906

    CAS  PubMed  PubMed Central  Google Scholar 

  155. McKenna MC (2012) Substrate competition studies demonstrate oxidative metabolism of glucose, glutamate, glutamine, lactate and 3-hydroxybutyrate in cortical astrocytes from rat brain. Neurochem Res 37:2613–2626

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Rimmele TS, de Castro Abrantes H, Wellbourne-Wood J, Lengacher S, Chatton JY (2018) Extracellular potassium and glutamate interact to modulate mitochondria in astrocytes. ACS Chem Neurosci 9:2009–2015

    CAS  PubMed  Google Scholar 

  157. Whitelaw BS, Robinson MB (2013) Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes. Front Endocrinol 4:123

    Google Scholar 

  158. Azarias G, Perreten H, Lengacher S, Poburko D, Demaurex N, Magistretti PJ, Chatton JY (2011) Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J Neurosci 31:3550–3559

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Perreten Lambert H, Zenger M, Azarias G, Chatton JY, Magistretti PJ, Lengacher S (2014) Control of mitochondrial pH by uncoupling protein 4 in astrocytes promotes neuronal survival. J Biol Chem 289:31014–31028

    PubMed  PubMed Central  Google Scholar 

  160. Shen Y, Tian Y, Shi X, Yang J, Ouyang L, Gao J, Lu J (2014) Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes. Cell Biochem Funct 32:530–537

    CAS  PubMed  Google Scholar 

  161. Winkler U, Seim P, Enzbrenner Y, Kohler S, Sicker M, Hirrlinger J (2017) Activity-dependent modulation of intracellular ATP in cultured cortical astrocytes. J Neurosci Res 95:2172–2181

    CAS  PubMed  Google Scholar 

  162. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901

    CAS  PubMed  Google Scholar 

  163. Barros LF, Brown A, Swanson RA (2018) Glia in brain energy metabolism: a perspective. Glia 66:1134–1137

    PubMed  Google Scholar 

  164. Juaristi I, Contreras L, Gonzalez-Sanchez P, Perez-Liebana I, Gonzalez-Moreno L, Pardo B, Del Arco A, Satrustegui J (2019) The response to stimulation in neurons and astrocytes. Neurochem Res 44:2385–2391

    CAS  PubMed  Google Scholar 

  165. Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM (2019) Energy dynamics in the brain: contributions of astrocytes to metabolism and pH homeostasis. Front Neurosci 13:1301

    PubMed  PubMed Central  Google Scholar 

  166. Magi S, Lariccia V, Castaldo P, Arcangeli S, Nasti AA, Giordano A, Amoroso S (2012) Physical and functional interaction of NCX1 and EAAC1 transporters leading to glutamate-enhanced ATP production in brain mitochondria. PLoS ONE 7:e34015

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Magi S, Arcangeli S, Castaldo P, Nasti AA, Berrino L, Piegari E, Bernardini R, Amoroso S, Lariccia V (2013) Glutamate-induced ATP synthesis: relationship between plasma membrane Na +/Ca2 + exchanger and excitatory amino acid transporters in brain and heart cell models. Mol Pharmacol 84:603–614

    CAS  PubMed  Google Scholar 

  168. Magi S, Piccirillo S, Amoroso S (2019) The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol Life Sci 76:1473–1488

    CAS  PubMed  Google Scholar 

  169. Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    CAS  PubMed  Google Scholar 

  170. Stobart JL, Anderson CM (2013) Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7:38

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Weber B, Barros LF (2015) The astrocyte: powerhouse and recycling center. Cold Spring Harb Perspect Biol 7(12):a020396

    PubMed  PubMed Central  Google Scholar 

  172. Bordone MP, Salman MM, Titus HE, Amini E, Andersen JV, Chakraborti B, Diuba AV, Dubouskaya TG, Ehrke E, Espindola de Freitas A, Braga de Freitas G, Goncalves RA, Gupta D, Gupta R, Ha SR, Hemming IA, Jaggar M, Jakobsen E, Kumari P, Lakkappa N, Marsh APL, Mitlohner J, Ogawa Y, Kumar PR, Ribeiro FC, Salamian A, Saleem S, Sharma S, Silva JM, Singh S, Sulakhiya K, Tefera TW, Vafadari B, Yadav A, Yamazaki R, Seidenbecher CI (2019) The energetic brain: a review from students to students. J Neurochem 151:139–165

    CAS  PubMed  Google Scholar 

  173. Alberini CM, Cruz E, Descalzi G, Bessieres B, Gao V (2018) Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 66:1244–1262

    PubMed  Google Scholar 

  174. Bak LK, Walls AB, Schousboe A, Waagepetersen HS (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293:7108–7116

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Albers GW, Goldberg MP, Choi DW (1992) Do NMDA antagonists prevent neuronal injury? Yes. Arch Neurol 49:418–420

    CAS  PubMed  Google Scholar 

  176. McDonald JW, Johnston MV (1990) Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Rev 15:41–70

    PubMed  Google Scholar 

  177. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic injury?? Lancet Neurol 1:383–386

    CAS  PubMed  Google Scholar 

  178. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    CAS  PubMed  Google Scholar 

  179. Almeida A, Delgado-Esteban M, Bolanos JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81:207–217

    CAS  PubMed  Google Scholar 

  180. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    PubMed  Google Scholar 

  181. Bambrick L, Kristian T, Fiskum G (2004) Astrocyte mitochondrial mechanisms of ischemic brain injury and neuroprotection. Neurochem Res 29:601–608

    CAS  PubMed  Google Scholar 

  182. Shih EK, Robinson MB (2018) Role of astrocytic mitochondria in limiting ischemic brain injury? Physiology (Bethesda) 33:99–112

    CAS  Google Scholar 

  183. Ito U, Hakamata Y, Kawakami E, Oyanagi K (2009) Degeneration of astrocytic processes and their mitochondria in cerebral cortical regions peripheral to the cortical infarction: heterogeneity of their disintegration is closely associated with disseminated selective neuronal necrosis and maturation of injury. Stroke 40:2173–2181

    PubMed  Google Scholar 

  184. Pekny M, Pekna M (2016) Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta 1862:483–491

    CAS  PubMed  Google Scholar 

  185. Shimada IS, LeComte MD, Granger JC, Quinlan NJ, Spees JL (2012) Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci 32:7926–7940

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L, Gotz M (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586

    CAS  PubMed  Google Scholar 

  187. Magnusson JP, Goritz C, Tatarishvili J, Dias DO, Smith EM, Lindvall O, Kokaia Z, Frisen J (2014) A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse. Science 346:237–241

    CAS  PubMed  Google Scholar 

  188. Becerra-Calixto A, Cardona-Gomez GP (2017) The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front Mol Neurosci 10:88

    PubMed  PubMed Central  Google Scholar 

  189. Torp R, Lekieffre D, Levy LM, Haug FM, Danbolt NC, Meldrum BS, Ottersen OP (1995) Reduced postischemic expression of a glial glutamate transporter, GLT-1, in the rat hippocampus. Exp Brain Res 103:51–58

    CAS  PubMed  Google Scholar 

  190. Chen JC, Hsu-Chou H, Lu JL, Chiang YC, Huang HM, Wang HL, Wu T, Liao JJ, Yeh TS (2005) Down-regulation of the glial glutamate transporter GLT-1 in rat hippocampus and striatum and its modulation by a group III metabotropic glutamate receptor antagonist following transient global forebrain ischemia. Neuropharmacology 49:703–714

    CAS  PubMed  Google Scholar 

  191. Yeh TH, Hwang HM, Chen JJ, Wu T, Li AH, Wang HL (2005) Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiol Dis 18:476–483

    CAS  PubMed  Google Scholar 

  192. Krzyzanowska W, Pomierny B, Filip M, Pera J (2014) Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 35:444–462

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zelenaia OA, Robinson MB (2000) Degradation of glial glutamate transporter mRNAs is selectively blocked by inhibition of cellular transcription. J Neurochem 75:2252–2258

    CAS  PubMed  Google Scholar 

  194. Gonzalez-Gonzalez IM, Garcia-Tardon N, Gimenez C, Zafra F (2008) PKC-dependent endocytosis of the GLT1 glutamate transporter depends on ubiquitylation of lysines located in a C-terminal cluster. Glia 56:963–974

    PubMed  Google Scholar 

  195. Sheldon AL, Gonzalez MI, Krizman-Genda EN, Susarla BT, Robinson MB (2008) Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter, GLT-1. Neurochem Int 53:296–308

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Ibanez I, Diez-Guerra FJ, Gimenez C, Zafra F (2016) Activity dependent internalization of the glutamate transporter GLT-1 mediated by beta-arrestin 1 and ubiquitination. Neuropharmacology 107:376–386

    CAS  PubMed  Google Scholar 

  197. Quintana DD, Garcia JA, Sarkar SN, Jun S, Engler-Chiurazzi EB, Russell AE, Cavendish JZ, Simpkins JW (2019) Hypoxia-reoxygenation of primary astrocytes results in a redistribution of mitochondrial size and mitophagy. Mitochondrion 47:244–255

    CAS  PubMed  Google Scholar 

  198. Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Methods 141:41–53

    PubMed  Google Scholar 

  199. O’Donnell JC, Jackson JG, Robinson MB (2016) Transient oxygen/glucose deprivation causes a delayed loss of mitochondria and increases spontaneous calcium signaling in astrocytic processes. J Neurosci 36:7109–7127

    PubMed  PubMed Central  Google Scholar 

  200. Owens K, Park JH, Gourley S, Jones H, Kristian T (2015) Mitochondrial dynamics: cell-type and hippocampal region specific changes following global cerebral ischemia. J Bioenerg Biomembr 47:13–31

    CAS  PubMed  Google Scholar 

  201. Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111:1208–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535:551–555

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Russo E, Napoli E, Borlongan CV (2018) Healthy mitochondria for stroke cells. Brain Circ 4:95–98

    PubMed  PubMed Central  Google Scholar 

  205. Berridge MV, Schneider RT, McConnell MJ (2016) Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metab 24:376–378

    CAS  PubMed  Google Scholar 

  206. Berridge MV, Herst PM, Rowe MR, Schneider R, McConnell MJ (2018) Mitochondrial transfer between cells: methodological constraints in cell culture and animal models. Anal Biochem 552:75–80

    CAS  PubMed  Google Scholar 

  207. Torralba D, Baixauli F, Sanchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107

    PubMed  PubMed Central  Google Scholar 

  208. Shimamoto K, Sakai R, Takaoka K, Yumoto N, Nakajima T, Amara SG, Shigeri Y (2004) Characterization of novel L-threo-beta-benzyloxyaspartate derivatives, potent blockers of the glutamate transporters. Mol Pharmacol 65:1008–1015

    CAS  PubMed  Google Scholar 

  209. Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol 292:C157–C163

    CAS  PubMed  Google Scholar 

  210. Fecher C, Trovo L, Muller SA, Snaidero N, Wettmarshausen J, Heink S, Ortiz O, Wagner I, Kuhn R, Hartmann J, Karl RM, Konnerth A, Korn T, Wurst W, Merkler D, Lichtenthaler SF, Perocchi F, Misgeld T (2019) Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat Neurosci 22:1731–1742

    CAS  PubMed  Google Scholar 

  211. Sonnewald U, Rae C (2010) Pyruvate carboxylation in different model systems studied by (13)C MRS. Neurochem Res 35:1916–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC (2014) Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol 11:13–30

    PubMed  PubMed Central  Google Scholar 

  213. Schousboe A, Waagepetersen HS, Sonnewald U (2019) Astrocytic pyruvate carboxylation: status after 35 years. J Neurosci Res 97:890–896

    CAS  PubMed  Google Scholar 

  214. Haberg A, Qu H, Saether O, Unsgard G, Haraldseth O, Sonnewald U (2001) Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. J Cereb Blood Flow Metab 21:1451–1463

    CAS  PubMed  Google Scholar 

  215. Brekke EM, Morken TS, Wideroe M, Haberg AK, Brubakk AM, Sonnewald U (2014) The pentose phosphate pathway and pyruvate carboxylation after neonatal hypoxic-ischemic brain injury. J Cereb Blood Flow Metab 34:724–734

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Brekke E, Berger HR, Wideroe M, Sonnewald U, Morken TS (2017) Glucose and intermediary metabolism and astrocyte-neuron interactions following neonatal hypoxia-ischemia in rat. Neurochem Res 42:115–132

    CAS  PubMed  Google Scholar 

  217. Badawi Y, Pal R, Hui D, Michaelis EK, Shi H (2015) Ischemic tolerance in an in vivo model of glutamate preconditioning. J Neurosci Res 93:623–632

    CAS  PubMed  Google Scholar 

  218. Kim AY, Jeong KH, Lee JH, Kang Y, Lee SH, Baik EJ (2017) Glutamate dehydrogenase as a neuroprotective target against brain ischemia and reperfusion. Neuroscience 340:487–500

    CAS  PubMed  Google Scholar 

  219. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    CAS  PubMed  Google Scholar 

  220. Ding S (2014) Ca(2 +) signaling in astrocytes and its role in ischemic stroke. Adv Neurobiol 11:189–211

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors regret that we were not able to cite all of the numerous studies that have been published in this area. The authors are partially supported by a grant from the National Institutes of Neurologic Disorders and Stroke of the National Institutes of Health (R01 NS106693). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Robinson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, M.B., Lee, M.L. & DaSilva, S. Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions. Neurochem Res 45, 526–540 (2020). https://doi.org/10.1007/s11064-020-02974-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-02974-8

Keywords

Navigation