Skip to main content

Advertisement

Log in

Characterization of primary glioma cell lines derived from the patients according to 2016 CNS tumour WHO classification and comparison with their parental tumours

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Gliomas represent about 80% of primary brain tumours and about 30% of malignant ones, which today don’t have a resolution therapy because of their variability. A valid model for the study of new personalized therapies can be represented by primary cultures from patient’s tumour biopsies.

Methods

In this study we consider 12 novel cell lines established from patients’ gliomas and immunohistochemically and molecularly characterized according to the newly updated 2016 CNS Tumour WHO classification.

Results

Eight of these lines were glioblastoma cells, two grade III glioma cells (anaplastic astrocytoma and oligo astrocytoma) and two low grade glioma cells (grade II astrocytoma and oligodendroglioma). All cell lines were analysed by immunohistochemistry for specific glioma markers, respectively VIMENTIN, GFAP, IDH1R132, and ATRX. The methylation status of the MGMT gene promoter was also determined in all lines. The comparison of the immunohistochemical characteristics and of the MGMT methylation status of the lines with the tissues of origin shows that the cells in culture maintain the same characteristics.

Conclusions

Human cancer cell lines represent a support in the knowledge of tumour biology and in drug discovery through its facile experimental manipulation.

Trial registration

NCT 04180046.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

Abbreviations

GBM:

Glioblastoma

TMZ:

Temozolomide

BBB:

Blood–brain barrier

IDH:

Isocitrate dehydrogenase

MGMT:

O6-methylguanine–DNA methyltransferase

References

  1. Ciceroni C, Bonelli M, Mastrantoni E, Niccolini C, Laurenza M, Larocca LM, Pallini R, Traficante A, Spinsanti P, Ricci-Vitiani L, Arcella A, De Maria R, Nicoletti F, Battaglia G, Melchiorri D (2013) Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ 20(3):396–407

    Article  CAS  Google Scholar 

  2. De Almeida SF, Lunardi Brunetto A, Schwartsmann G, Roesler R, Abujamra AL (2012) Glioma revisited: from neurogenesis and cancer stem cells to the epigenetic regulation of theniche. J Oncol 2012:537861

    Google Scholar 

  3. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109(1):93–108

    Article  Google Scholar 

  4. Surawicz TS, Davis F, Freels S, Laws ER Jr., Menck HR (1998) Brain tumor survival: results from the National Cancer Data Base. J Neurooncol 40(2):151–160

    Article  CAS  Google Scholar 

  5. Stupp R, Weber DC (2005) The role of radio- and chemotherapy in glioblastoma. Onkologie 28(6–7):315–317

    PubMed  Google Scholar 

  6. Dai C, Holland EC (2003) Astrocyte differentiation states and glioma formation. Cancer J. 9(2):72–81

    Article  CAS  Google Scholar 

  7. Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A, Aldape K, Brat D, Collins VP, Eberhart C, Figarella-Branger D, Fuller GN, Giangaspero F, Giannini C, Hawkins C, Kleihues P, Korshunov A, Kros JM, Lopes MB, Ng HK, Ohgaki H, Paulus W, Pietsch T, Rosenblum M, Rushing E, Soylemezoglu F, Wiestler O, Wesseling P (2014) International Society of Neuropathology-Haarlem. International Society of Neuropathology-Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading. Brain Pathol 24(5):429–435

    Article  Google Scholar 

  8. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820

    Article  Google Scholar 

  9. van den Bent MJ, Weller M, Wen PY, Kros JM, Aldape K, Chang S (2017) A clinical perspective on the 2016 WHO brain tumor classification and routine molecular diagnostics. Neuro Oncol 19(5):614–624

    Article  Google Scholar 

  10. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772

    Article  CAS  Google Scholar 

  11. Deng L, Xiong P, Luo Y, Bu X, Qian S, Zhong W, Lv S (2018) Association between IDH1/2 mutations and brain glioma grade. Oncol Lett 16(4):5405–5409

    PubMed  PubMed Central  Google Scholar 

  12. Cancer Genome Atlas Research (2008) Network comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  13. Yan H, Parsons DW, Jin G, Mc LR, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  CAS  Google Scholar 

  14. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602

    Article  CAS  Google Scholar 

  15. Ichimura K, Pearson DM, Kocialkowski S, Bäcklund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347

    Article  CAS  Google Scholar 

  16. Horbinski C (2013) What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 125:621–636

    Article  CAS  Google Scholar 

  17. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, Marks KM, Prins RM, Ward PS, Yen KE, Liau LM, Rabinowitz JD, Cantley LC, Thompson CB, Vander Heiden MG, Su SM (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739

    Article  CAS  Google Scholar 

  18. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AWM, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LGT, Huse JT, Mellinghoff IK, Chan TA (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    Article  CAS  Google Scholar 

  19. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    Article  CAS  Google Scholar 

  20. Reiter-Brennan C, Semmler L, Klein A (2018) The effects of 2-hydroxyglutarate on the tumorigenesis of gliomas. ContempOncol (Pozn) 22(4):215–222

    CAS  Google Scholar 

  21. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, Delattre JY (2009) Isocitrate Dehydrogenase 1 Codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154

    Article  CAS  Google Scholar 

  22. Hartmann C, Hentschel B, Simon M, Westphal M, Schackert G, Tonn JC, Loeffler M, Reifenberger G, Pietsch T, von Deimling A, Weller M, German Glioma Network (2013) Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res. 19(18):5146–5157

    Article  CAS  Google Scholar 

  23. Cohen A, Holmen S, Colman H (2013) IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 13(5):345

    Article  Google Scholar 

  24. Minniti G, Salvati M, Arcella A, Buttarelli F, D’Elia A, Lanzetta G, Esposito V, Scarpino S, MauriziEnrici R, Giangaspero F (2011) Correlation between O6-methylguanine-DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide. J Neurooncol 102:311–316

    Article  CAS  Google Scholar 

  25. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JEC, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 352:997–1003

    Article  CAS  Google Scholar 

  26. Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, George AJ, Morgan KA, Mann JR, Andy Choo KH (2010) ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20(3):351–360

    Article  CAS  Google Scholar 

  27. Voon HP, Hughes JR, Rode C, De La Rosa-Velázquez IA, Jenuwein T, Feil R et al (2015) ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep 11(3):405–418

    Article  CAS  Google Scholar 

  28. Elsässer SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA (2015) Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 522(7555):240–244

    Article  Google Scholar 

  29. Udugama M, Chang FT, Chan FL, Tang MC, Pickett HA, McGhie JD et al (2015) Histone variant H3.3 provides the heterochromatic H3 lysine 9 tri-methylation mark at telomeres. Nucleic Acids Res 43(21):10227–10237

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bérubé NG, Smeenk CA, Picketts DJ (2000) Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association. Hum Mol Genet 9(4):539–547

    Article  Google Scholar 

  31. Gibbons R (2006) Alpha thalassaemia-mental retardation, X linked. Orphanet J Rare Dis 1:15

    Article  Google Scholar 

  32. Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM, Fleming A, Hadjadj D, Schwartzentruber J, Majewski J, Dong Z, Siegel P, Albrecht S, Croul S, Jones DTW, Kool M, Tonjes M, Reifenberger G, Faury D, Zadeh G, Pfister S, Frequent NJ (2012) ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124:615–625

    Article  CAS  Google Scholar 

  33. Ramirez C, Bowman C, Maurage CA, Dubois F, Blond S, Porchet N, Escande F (2010) Loss of 1p, 19q, and 10q heterozygosity prospectively predicts prognosis of oligodendroglial tumors—towards individualized tumor treatment? Neuro Oncol 12(5):490–499

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bax DA, Little SE, Gaspar N, Perryman L, Marshall L, Viana-Pereira M, Jones TA, Williams RD, Grigoriadis A, Vassal G, Workman P, Sheer D, Reis RM, Pearson ADJ, Hargrave D, Jones C (2009) Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS ONE 4(4):e5209

    Article  Google Scholar 

  35. Akuta N, Suzuki F, Kobayashi M, Fujiyama S, Kawamura Y, Sezaki H, Hosaka T, Saitoh S, Arase Y, Ikeda K, Suzuki Y, Kumada H (2020) Detection of TERT promoter mutation in serum cell-free DNA using wild-type blocking PCR combined with Sanger sequencing in hepatocellular carcinoma. J Med Virol. https://doi.org/10.1002/jmv.25724

    Article  PubMed  Google Scholar 

  36. Loussouarn D, Le Loupp AG, Frenel JS, Leclair F, Von Deimling A, Aumont M, Martin S, Campone M, Denis MG (2012) Comparison of immunohistochemistry, DNA sequencing and allele-specific PCR for the detection of IDH1 mutations in gliomas. Int J Oncol 40:2058–2062

    CAS  PubMed  Google Scholar 

  37. Agarwal S, Sharma MC, Jha P, Pathak P, Suri V, Sarkar C, Chosdol K, Suri A, Kale SS, Mahapatra AK, Jha P (2013) Comparative study of IDH1 mutations in gliomas by immunohistochemistry and DNA sequencing. Neuro Oncol 15(6):718–726

    Article  CAS  Google Scholar 

  38. Waitkus MS, Yan H (2020) Targeting isocitrate dehydrogenase mutations in cancer: emerging evidence and diverging strategies. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-20-1827

    Article  PubMed  Google Scholar 

  39. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, Gilbert MR, Yang C (2020) IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 122:1580–1589

    Article  Google Scholar 

  40. Arcella A, Palchetti S, Digiacomo L, Pozzi D, Capriotti A, Frati L, Oliva MA, Tsaouli G, Rota R, Screpanti I, MahmoudiMandCaracciolo G (2018) Brain targeting by liposome-biomolecular corona boosts anticancer efficacy of temozolomide in glioblastoma cells. ACS Chem Neurosci 9(12):3166–3174

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by Italian Ministry of Health with Ricerca Corrente.

Author information

Authors and Affiliations

Authors

Contributions

MAO performed immunofluorescence, immunohistochemistry and proliferation assay; SS performed MGMT methylation specific PCR and DNA sequencing; SC contributed to the expansion of cell cultures; VE collected and provided glioma biopsies; FG performed the histological diagnosis of gliomas and contributed to the discussion of the data; AA performed the molecular analysis of gliomas, coordinated this study, prepared primary cell cultures from biopsies and wrote the paper.

Corresponding author

Correspondence to Antonietta Arcella.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for submission

The work described here has not been published before and is not under consideration for publication elsewhere. The authors declare that they have no conflict of interest. All authors have approved the manuscript.

Ethical approval

This study was approved by Neuromed Ethics Committee on 20 February 2020 and registered on Clinical Trial.gov with identification number NCT 04180046.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11060_2020_3673_MOESM1_ESM.tif

Figure S1 Primary cell culture and corresponding tumour tissue FL : low grade human glioma (grade II oligodendroglioma) IDH1R132 mutant. A) Cells and tissues express glioma markers VIMENTIN, GFAP, wild type ATRX and IDH1R132H mutation. B) Electropherogram shows cDNA Sequencing of IDH1 in primary cell line (lower panel) and DNA Sequencing of IDH1 in corresponding tumor tissue (upper panel). C) Representative electropherogram of Loss of heterozygosity analysis on 1p chromosome; it shows a deletion at locus D1S508 both in cells and corresponding patient's tissue respect to the patient's blood (used as control wild type). Supplementary file1 (TIF 55990 KB)

11060_2020_3673_MOESM2_ESM.tif

Figure S2 Doubling time of primary glioblastoma cell lines (A) and low grade glioma cell lines (B). Low grade glioma cells (MI, FL) proliferate slowly than glioblastoma cells (PAP, CL, NULU, COGI). Growth curves of low grade glioma cells IDH1 mutant treated with TMZ (C) Both glioma cell lines (MI, FL) were responsive to TMZ treatment, expecially at the higher concentration used (50 μM). Western blot analysis of IDH1R132H mutation in low grade glioma cells (D). Western blot of MI and FL protein’s lysates showed a 46kDa band corresponding to the mutated protein in both cell lines analysed. Supplementary file2 (TIF 20839 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, M.A., Staffieri, S., Castaldo, S. et al. Characterization of primary glioma cell lines derived from the patients according to 2016 CNS tumour WHO classification and comparison with their parental tumours. J Neurooncol 151, 123–133 (2021). https://doi.org/10.1007/s11060-020-03673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03673-8

Keywords

Navigation