Skip to main content
Log in

What do we know about IDH1/2 mutations so far, and how do we use it?

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Whole genome analyses have facilitated the discovery of clinically relevant genetic alterations in a variety of diseases, most notably cancer. A prominent example of this was the discovery of mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) in a sizeable proportion of gliomas and some other neoplasms. Herein the normal functions of these enzymes, how the mutations alter their catalytic properties, the effects of their d-2-hydroxyglutarate metabolite, technical considerations in diagnostic neuropathology, implications about prognosis and therapeutic considerations, and practical applications and controversies regarding IDH1/2 mutation testing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbas S, Lugthart S, Kavelaars FG et al (2010) Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116(12):2122–2126

    PubMed  CAS  Google Scholar 

  2. Aghili M, Zahedi F, Rafiee E (2009) Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91:233–236

    PubMed  Google Scholar 

  3. Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9(6):1191–1200

    PubMed  CAS  Google Scholar 

  4. Ahmadi R, Stockhammer F, Becker N et al (2012) No prognostic value of IDH1 mutations in a series of 100 WHO grade II astrocytomas. J Neurooncol 109(1):15–22

    PubMed  CAS  Google Scholar 

  5. Akalin A, Garrett-Bakelman FE, Kormaksson M et al (2012) Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 8(6):e1002781

    PubMed  CAS  Google Scholar 

  6. Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224(3):334–343

    PubMed  CAS  Google Scholar 

  7. Amary MF, Damato S, Halai D et al (2011) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43(12):1262–1265

    PubMed  CAS  Google Scholar 

  8. Andronesi OC, Kim GS, Gerstner E et al (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4(116):116ra4

    PubMed  Google Scholar 

  9. Atai NA, Renkema-Mills NA, Bosman J et al (2011) Differential activity of NADPH-producing dehydrogenases renders rodents unsuitable models to study IDH1R132 mutation effects in human glioblastoma. J Histochem Cytochem 59(5):489–503

    PubMed  CAS  Google Scholar 

  10. Atkinson SP, Hoare SF, Glasspool RM, Keith WN (2005) Lack of telomerase gene expression in alternative lengthening of telomere cells is associated with chromatin remodeling of the hTR and hTERT gene promoters. Cancer Res 65(17):7585–7590

    PubMed  CAS  Google Scholar 

  11. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602

    PubMed  CAS  Google Scholar 

  12. Balss J, Pusch S, Beck AC et al (2012) Enzymatic assay for quantitative analysis of (D)-2-hydroxyglutarate. Acta Neuropathol 124(6):883–891

    PubMed  CAS  Google Scholar 

  13. Bettegowda C, Agrawal N, Jiao Y et al (2011) Mutations in CIC and FUBP1 contribute to human oligodendroglioma. Science 333(6048):1453–1455

    PubMed  CAS  Google Scholar 

  14. Bleeker FE, Atai NA, Lamba S et al (2010) The prognostic IDH1 (R132) mutation is associated with reduced NADP + dependent IDH activity in glioblastoma. Acta Neuropathol 119(4):487–494

    PubMed  CAS  Google Scholar 

  15. Bleeker FE, Lamba S, Leenstra S et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30(1):7–11

    PubMed  CAS  Google Scholar 

  16. Boisselier B, Gallego Perez-Larraya J, Rossetto M et al (2012) Detection of IDH1 mutation in the plasma of patients with glioma. Neurology 79(16):1693–1698

    PubMed  CAS  Google Scholar 

  17. Borger DR, Tanabe KK, Fan KC et al (2012) Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist 17(1):72–79

    PubMed  CAS  Google Scholar 

  18. Bralten LB, Kloosterhof NK, Balvers R et al (2011) IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo. Ann Neurol 69(3):455–463

    PubMed  CAS  Google Scholar 

  19. Brauburger K, Burckhardt G, Burckhardt BC (2011) The sodium-dependent di- and tricarboxylate transporter, NaCT, is not responsible for the uptake of d-, l-2-hydroxyglutarate and 3-hydroxyglutarate into neurons. J Inherit Metab Dis 34(2):477–482

    PubMed  CAS  Google Scholar 

  20. Brehmer S, Pusch S, Schmieder K, von Deimling A, Hartmann C (2011) Mutational analysis of D2HGDH and L2HGDH in brain tumours without IDH1 or IDH2 mutations. Neuropathol Appl Neurobiol 37(3):330–332

    PubMed  CAS  Google Scholar 

  21. Camelo-Piragua S, Jansen M, Ganguly A, Kim JC, Louis DN, Nutt CL (2010) Mutant IDH1-specific immunohistochemistry distinguishes diffuse astrocytoma from astrocytosis. Acta Neuropathol 119(4):509–511

    PubMed  Google Scholar 

  22. Capper D, Reuss D, Schittenhelm J et al (2011) Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol 121(2):241–252

    PubMed  Google Scholar 

  23. Capper D, Simon M, Langhans CD et al (2011) 2-Hydroxyglutarate concentration in serum from patients with gliomas does not correlate with IDH1/2 mutation status or tumor size. Int J Cancer 131(3):766–768

    PubMed  Google Scholar 

  24. Capper D, Weissert S, Balss J et al (2009) Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors. Brain Pathol 20(1):245–254

    PubMed  Google Scholar 

  25. Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601

    PubMed  CAS  Google Scholar 

  26. Carrillo JA, Lai A, Nghiemphu PL et al (2012) Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma. AJNR Am J Neuroradiol 33(7):1349–1355

    PubMed  CAS  Google Scholar 

  27. Chalmers RA, Lawson AM, Watts RW et al (1980) d-2-hydroxyglutaric aciduria: case report and biochemical studies. J Inherit Metab Dis 3(1):11–15

    PubMed  CAS  Google Scholar 

  28. Choi C, Ganji SK, DeBerardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 18(4):624–629

    PubMed  CAS  Google Scholar 

  29. Chou WC, Lei WC, Ko BS et al (2011) The prognostic impact and stability of isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 25(2):246–253

    PubMed  CAS  Google Scholar 

  30. Chowdhury R, Yeoh KK, Tian YM et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12(5):463–469

    PubMed  CAS  Google Scholar 

  31. Christensen BC, Smith AA, Zheng S et al (2011) DNA methylation, isocitrate dehydrogenase mutation, and survival in glioma. J Natl Cancer Inst 103(2):143–153

    PubMed  CAS  Google Scholar 

  32. Clark K, Voronovich Z, Horbinski C (2013) How molecular testing can help (and hurt) in the workup of gliomas. Am J Clin Pathol 139(3):275–288

    PubMed  Google Scholar 

  33. Clark KH, Villano JL, Nikiforova MN, Hamilton RL, Horbinski C (2013) 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol. doi:10.1111/nan.12031

    PubMed  Google Scholar 

  34. Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    PubMed  CAS  Google Scholar 

  35. DeGregori J (2011) Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res 71(11):3739–3744

    PubMed  CAS  Google Scholar 

  36. Desestret V, Ciccarino P, Ducray F et al (2011) Prognostic stratification of gliomatosis cerebri by IDH1 R132H and INA expression. J Neurooncol 105(2):219–224

    PubMed  CAS  Google Scholar 

  37. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    PubMed  CAS  Google Scholar 

  38. Dubbink HJ, Taal W, van Marion R et al (2009) IDH1 mutations in low-grade astrocytomas predict survival but not response to temozolomide. Neurology 73(21):1792–1795

    PubMed  CAS  Google Scholar 

  39. Ducray F, El Hallani S, Idbaih A (2009) Diagnostic and prognostic markers in gliomas. Curr Opin Oncol 21(6):537–542

    PubMed  CAS  Google Scholar 

  40. Duncan CG, Barwick BG, Jin G et al (2012) A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 22(12):2339–2355

    PubMed  CAS  Google Scholar 

  41. Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26(4):447–450

    PubMed  CAS  Google Scholar 

  42. Duran M, Kamerling JP, Bakker HD, van Gennip AH, Wadman SK (1980) l-2-Hydroxyglutaric aciduria: an inborn error of metabolism? J Inherit Metab Dis 3(4):109–112

    PubMed  CAS  Google Scholar 

  43. Elkhaled A, Jalbert LE, Phillips JJ et al (2012) Magnetic resonance of 2-hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med 4(116):116ra5

    PubMed  Google Scholar 

  44. Ellezam B, Theeler BJ, Walbert T et al (2012) Low rate of R132H IDH1 mutation in infratentorial and spinal cord grade II and III diffuse gliomas. Acta Neuropathol 124(3):449–451

    PubMed  Google Scholar 

  45. Fathi AT, Sadrzadeh H, Borger DR et al (2012) Prospective serial evaluation of 2-hydroxyglutarate, during treatment of newly diagnosed acute myeloid leukemia, to assess disease activity and therapeutic response. Blood 120(23):4649–4652

    PubMed  CAS  Google Scholar 

  46. Felsberg J, Wolter M, Seul H et al (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119(4):501–507

    PubMed  CAS  Google Scholar 

  47. Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    PubMed  CAS  Google Scholar 

  48. Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW (2012) Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res 25(3):375–383

    PubMed  CAS  Google Scholar 

  49. Gaal J, Burnichon N, Korpershoek E et al (2010) Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. J Clin Endocrinol Metab 95(3):1274–1278

    PubMed  CAS  Google Scholar 

  50. Glas M, Bahr O, Felsberg J et al (2011) NOA-05 phase 2 trial of procarbazine and lomustine therapy in gliomatosis cerebri. Ann Neurol 70(3):445–453

    PubMed  CAS  Google Scholar 

  51. Gorovets D, Kannan K, Shen R et al (2012) IDH mutation and neuroglial developmental features define clinically distinct subclasses of lower grade diffuse astrocytic glioma. Clin Cancer Res 18(9):2490–2501

    PubMed  CAS  Google Scholar 

  52. Goze C, Bezzina C, Goze E et al (2012) 1P19Q loss but not IDH1 mutations influences WHO grade II gliomas spontaneous growth. J Neurooncol 108(1):69–75

    PubMed  Google Scholar 

  53. Gravendeel LA, Kloosterhof NK, Bralten LB et al (2010) Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat 31(3):E1186–E1199

    PubMed  CAS  Google Scholar 

  54. Gravendeel LA, Kouwenhoven MC, Gevaert O et al (2009) Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res 69(23):9065–9072

    PubMed  CAS  Google Scholar 

  55. Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE (2010) The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 116(15):2779–2782

    PubMed  CAS  Google Scholar 

  56. Gross S (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207:339–344

    PubMed  CAS  Google Scholar 

  57. Gupta R, Flanagan S, Li CC et al (2013) Expanding the spectrum of IDH1 mutations in gliomas. Mod Pathol. doi:10.1038/modpathol.2012.210

    PubMed  Google Scholar 

  58. Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120(6):707–718

    PubMed  Google Scholar 

  59. Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474

    PubMed  Google Scholar 

  60. Hegi ME (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    PubMed  CAS  Google Scholar 

  61. Horbinski C (2012) Something old and something new about molecular diagnostics in gliomas. In: Hunt JL (ed) Surgical pathology clinics: molecular oncology. Elsevier, Philadelphia, pp 919–939

    Google Scholar 

  62. Horbinski C, Kelly L, Nikiforov YE, Durso MB, Nikiforova MN (2010) Detection of IDH1 and IDH2 mutations by fluorescence melting curve analysis as a diagnostic tool for brain biopsies. J Mol Diagn 12(4):487–492

    PubMed  CAS  Google Scholar 

  63. Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN (2009) Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 68:1319–1325

    PubMed  CAS  Google Scholar 

  64. Horbinski C, Kofler J, Yeaney G et al (2011) Isocitrate dehydrogenase 1 analysis differentiates gangliogliomas from infiltrative gliomas. Brain Pathol 21(5):564–574

    PubMed  CAS  Google Scholar 

  65. Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75(17):1560–1566

    PubMed  CAS  Google Scholar 

  66. Ichimura K (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347

    PubMed  CAS  Google Scholar 

  67. Jenkins RB, Xiao Y, Sicotte H et al (2012) A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 44(10):1122–1125

    PubMed  CAS  Google Scholar 

  68. Jin G, Reitman ZJ, Duncan CG et al (2013) Disruption of wild-type IDH1 suppresses D-2-hydroxyglutarate production in IDH1-mutated gliomas. Cancer Res 73(2):496–501

    PubMed  CAS  Google Scholar 

  69. Jin G, Reitman ZJ, Spasojevic I et al (2011) 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS One 6(2):e16812

    PubMed  CAS  Google Scholar 

  70. Jo SH, Lee SH, Chun HS et al (2002) Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun 292(2):542–549

    PubMed  CAS  Google Scholar 

  71. Jo SH, Son MK, Koh HJ et al (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP + -dependent isocitrate dehydrogenase. J Biol Chem 276(19):16168–16176

    PubMed  CAS  Google Scholar 

  72. Jones DT, Mulholland SA, Pearson DM et al (2011) Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 121(6):753–761

    PubMed  Google Scholar 

  73. Joseph NM, Phillips J, Dahiya S et al (2012) Diagnostic implications of IDH1-R132H and OLIG2 expression patterns in rare and challenging glioblastoma variants. Mod Pathol 26(3):315–326

    PubMed  Google Scholar 

  74. Juratli TA, Kirsch M, Geiger K et al (2012) The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J Neurooncol 110(3):325–333

    PubMed  CAS  Google Scholar 

  75. Juratli TA, Kirsch M, Robel K et al (2012) IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. J Neurooncol 108(3):403–410

    PubMed  CAS  Google Scholar 

  76. Juratli TA, Peitzsch M, Geiger K, Schackert G, Eisenhofer G, Krex D (2013) Accumulation of 2-hydroxyglutarate is not a biomarker for malignant progression in IDH-mutated low-grade gliomas. Neuro Oncol [Epub ahead of print]

  77. Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125(2):353–355

    PubMed  CAS  Google Scholar 

  78. Kannan K, Inagaki A, Silber J et al (2012) Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 3(10):1194–1203

    PubMed  Google Scholar 

  79. Khuong-Quang DA, Buczkowicz P, Rakopoulos P et al (2012) K27 M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 124(3):439–447

    PubMed  CAS  Google Scholar 

  80. Kil IS, Huh TL, Lee YS, Lee YM, Park JW (2006) Regulation of replicative senescence by NADP + -dependent isocitrate dehydrogenase. Free Radic Biol Med 40(1):110–119

    PubMed  CAS  Google Scholar 

  81. Kil IS, Kim SY, Lee SJ, Park JW (2007) Small interfering RNA-mediated silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase enhances the sensitivity of HeLa cells toward tumor necrosis factor-alpha and anticancer drugs. Free Radic Biol Med 43(8):1197–1207

    PubMed  CAS  Google Scholar 

  82. Kil IS, Lee JH, Shin AH, Park JW (2004) Glycation-induced inactivation of NADP(+)-dependent isocitrate dehydrogenase: implications for diabetes and aging. Free Radic Biol Med 37(11):1765–1778

    PubMed  CAS  Google Scholar 

  83. Kim J, Kim JI, Jang HS, Park JW, Park KM (2011) Protective role of cytosolic NADP(+)-dependent isocitrate dehydrogenase, IDH1, in ischemic pre-conditioned kidney in mice. Free Radic Res 45(7):759–766

    PubMed  CAS  Google Scholar 

  84. Kim YH, Nobusawa S, Mittelbronn M et al (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177(6):2708–2714

    PubMed  Google Scholar 

  85. Kim YH, Pierscianek D, Mittelbronn M et al (2011) TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol 64(10):850–852

    PubMed  CAS  Google Scholar 

  86. Kipp BR, Voss JS, Kerr SE et al (2012) Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma. Hum Pathol 43(10):1552–1558

    PubMed  CAS  Google Scholar 

  87. Koivunen P, Lee S, Duncan CG et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390):484–488

    PubMed  CAS  Google Scholar 

  88. Korshunov A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118(3):401–405

    PubMed  CAS  Google Scholar 

  89. Koszarska M, Bors A, Feczko A et al (2012) Type and location of isocitrate dehydrogenase mutations influence clinical characteristics and disease outcome of acute myeloid leukemia. Leuk Lymphoma [Epub ahead of print]

  90. Kranendijk M, Struys EA, van Schaftingen E et al (2010) IDH2 mutations in patients with d-2-hydroxyglutaric aciduria. Science 330(6002):336

    PubMed  CAS  Google Scholar 

  91. Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS One 6(5):e19868

    PubMed  CAS  Google Scholar 

  92. Labussiere M, Idbaih A, Wang XW et al (2010) All the 1p19q codeleted gliomas are mutated on IDH1 or IDH2. Neurology 74(23):1886–1890

    PubMed  CAS  Google Scholar 

  93. Laffaire J, Everhard S, Idbaih A et al (2011) Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro Oncol 13(1):84–98

    PubMed  CAS  Google Scholar 

  94. Lai A, Kharbanda S, Pope WB et al (2012) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29(34):4482–4490

    Google Scholar 

  95. Lass U, Numann A, von Eckardstein K et al (2012) Clonal analysis in recurrent astrocytic, oligoastrocytic and oligodendroglial tumors implicates IDH1- mutation as common tumor initiating event. PLoS One 7(7):e41298

    PubMed  CAS  Google Scholar 

  96. Latini A, da Silva CG, Ferreira GC et al (2005) Mitochondrial energy metabolism is markedly impaired by d-2-hydroxyglutaric acid in rat tissues. Mol Genet Metab 86(1–2):188–199

    PubMed  CAS  Google Scholar 

  97. Latini A, Scussiato K, Rosa RB et al (2003) d-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci 17(10):2017–2022

    PubMed  Google Scholar 

  98. Lazovic J, Soto H, Piccioni D et al (2012) Detection of 2-hydroxyglutaric acid in vivo by proton magnetic resonance spectroscopy in U87 glioma cells overexpressing isocitrate dehydrogenase-1 mutation. Neuro Oncol 14(12):1465–1472

    PubMed  CAS  Google Scholar 

  99. Lee JH, Kim SY, Kil IS, Park JW (2007) Regulation of ionizing radiation-induced apoptosis by mitochondrial NADP+dependent isocitrate dehydrogenase. J Biol Chem 282(18):13385–13394

    PubMed  CAS  Google Scholar 

  100. Lee SM, Huh TL, Park JW (2001) Inactivation of NADP(+)-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie 83(11–12):1057–1065

    PubMed  CAS  Google Scholar 

  101. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32(11):1185–1196

    PubMed  CAS  Google Scholar 

  102. Lee SM, Park SY, Shin SW, Kil IS, Yang ES, Park JW (2009) Silencing of cytosolic NADP(+)-dependent isocitrate dehydrogenase by small interfering RNA enhances the sensitivity of HeLa cells toward staurosporine. Free Radic Res 43(2):165–173

    PubMed  CAS  Google Scholar 

  103. Leonardi R, Subramanian C, Jackowski S, Rock CO (2012) Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem 287(18):14615–14620

    PubMed  CAS  Google Scholar 

  104. Leu S, von Felten S, Frank S et al (2013) IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival. Neuro Oncol [Epub ahead of print]

  105. Li S, Chou AP, Chen W et al (2013) Overexpression of isocitrate dehydrogenase mutant proteins renders glioma cells more sensitive to radiation. Neuro Oncol 15(1):57–68

    PubMed  CAS  Google Scholar 

  106. Liu XY, Gerges N, Korshunov A et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124(5):615–625

    PubMed  CAS  Google Scholar 

  107. Lopez GY, Reitman ZJ, Solomon D et al (2010) IDH1(R132) mutation identified in one human melanoma metastasis, but not correlated with metastases to the brain. Biochem Biophys Res Commun 398(3):585–587

    PubMed  CAS  Google Scholar 

  108. Losman JA, Looper R, Koivunen P et al (2013) (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science [Epub ahead of print]

  109. Loussouarn D, Le Loupp AG, Frenel JS et al (2012) Comparison of immunohistochemistry, DNA sequencing and allele-specific PCR for the detection of IDH1 mutations in gliomas. Int J Oncol 40(6):2058–2062

    PubMed  CAS  Google Scholar 

  110. Lovejoy CA, Li W, Reisenweber S et al (2012) Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet 8(7):e1002772

    PubMed  CAS  Google Scholar 

  111. Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    PubMed  CAS  Google Scholar 

  112. Luchman HA, Stechishin OD, Dang NH et al (2012) An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro Oncol 14(2):184–191

    PubMed  CAS  Google Scholar 

  113. Malmstrom A, Gronberg BH, Marosi C et al (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol 13(9):916–926 (Epub 2012 Aug 8)

    PubMed  Google Scholar 

  114. Marcucci G, Maharry K, Wu YZ et al (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28(14):2348–2355

    PubMed  CAS  Google Scholar 

  115. McDonald KL, McDonnell J, Muntoni A et al (2010) Presence of alternative lengthening of telomeres mechanism in patients with glioblastoma identifies a less aggressive tumor type with longer survival. J Neuropathol Exp Neurol 69(7):729–736

    PubMed  Google Scholar 

  116. Metallo CM, Gameiro PA, Bell EL et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    PubMed  Google Scholar 

  117. Metellus P, Colin C, Taieb D et al (2011) IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J Neurooncol 105(3):591–600

    PubMed  CAS  Google Scholar 

  118. Metellus P, Coulibaly B, Colin C et al (2010) Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol 120(6):719–729

    PubMed  Google Scholar 

  119. Meyer J, Pusch S, Balss J et al (2010) PCR- and restriction endonuclease-based detection of IDH1 mutations. Brain Pathol 20(2):298–300

    PubMed  CAS  Google Scholar 

  120. Mukasa A, Takayanagi S, Saito K et al (2011) The significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer Sci 2:1349–7006

    Google Scholar 

  121. Mulholland S, Pearson DM, Hamoudi RA et al (2012) MGMT CpG island is invariably methylated in adult astrocytic and oligodendroglial tumors with IDH1 or IDH2 mutations. Int J Cancer 131(5):1104–1113

    PubMed  CAS  Google Scholar 

  122. Mullen AR, Wheaton WW, Jin ES et al (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481(7381):385–388

    PubMed  Google Scholar 

  123. Muller T, Gessi M, Waha A et al (2012) Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas. Am J Pathol 181(2):675–683

    PubMed  Google Scholar 

  124. Nguyen DN, Heaphy CM, de Wilde RF et al (2012) Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in high grade astrocytomas. Brain Pathol 29:1750–3639

    Google Scholar 

  125. Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15(19):6002–6007

    PubMed  CAS  Google Scholar 

  126. Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    PubMed  CAS  Google Scholar 

  127. Okita Y, Narita Y, Miyakita Y et al (2012) IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int J Oncol. doi:10.3892/ijo.2012.1564

  128. Olar A, Raghunathan A, Albarracin CT et al (2012) Absence of IDH1-R132H mutation predicts rapid progression of nonenhancing diffuse glioma in older adults. Ann Diagn Pathol 16(3):161–170

    PubMed  Google Scholar 

  129. Pang B, Durso MB, Hamilton RL, Nikiforova MN (2013) A novel cold-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas. Diagn Mol Pathol 22(1):28–34

    PubMed  CAS  Google Scholar 

  130. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    PubMed  CAS  Google Scholar 

  131. Patel JP, Gonen M, Figueroa ME et al (2012) Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 366(12):1079–1089

    PubMed  CAS  Google Scholar 

  132. Patnaik MM, Hanson CA, Hodnefield JM et al (2011) Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a mayo clinic study of 277 patients. Leukemia 26(1):101–105

    PubMed  Google Scholar 

  133. Perez C, Martinez-Calle N, Martin-Subero JI et al (2012) TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PLoS One 7(2):e31605

    PubMed  CAS  Google Scholar 

  134. Pietrak B, Zhao H, Qi H et al (2011) A tale of two subunits: how the neomorphic R132H IDH1 mutation enhances production of alpha HG. Biochemistry 50(21):4804–4812

    PubMed  CAS  Google Scholar 

  135. Pollack IF, Hamilton RL, Sobol RW et al (2011) IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst 27(1):87–94

    PubMed  Google Scholar 

  136. Preusser M, Hoeftberger R, Woehrer A et al (2012) Prognostic value of Ki67 index in anaplastic oligodendroglial tumours—a translational study of the European organization for research and treatment of cancer brain tumor group. Histopathology 60(6):885–894

    PubMed  Google Scholar 

  137. Preusser M, Wohrer A, Stary S, Hoftberger R, Streubel B, Hainfellner JA (2011) Value and limitations of immunohistochemistry and gene sequencing for detection of the IDH1-R132H mutation in diffuse glioma biopsy specimens. J Neuropathol Exp Neurol 70(8):715–723

    PubMed  CAS  Google Scholar 

  138. Pusch S, Sahm F, Meyer J, Mittelbronn M, Hartmann C, von Deimling A (2011) Glioma IDH1 mutation patterns off the beaten track. Neuropathol Appl Neurobiol 37(4):428–430

    PubMed  CAS  Google Scholar 

  139. Qi ST, Yu L, Lu YT et al (2011) IDH mutations occur frequently in Chinese glioma patients and predict longer survival but not response to concomitant chemoradiotherapy in anaplastic gliomas. Oncol Rep 26(6):1479–1485

    PubMed  CAS  Google Scholar 

  140. Reitman ZJ, Jin G, Karoly ED et al (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 108(8):3270–3275

    PubMed  CAS  Google Scholar 

  141. Rice T, Zheng S, Decker PA et al (2013) Inherited variant on chromosome 11q23 increases susceptibility to IDH-mutated but not IDH-normal gliomas regardless of grade or histology. Neuro Oncol [Epub ahead of print]

  142. Royds JA, Al Nadaf S, Wiles AK et al (2011) The CDKN2A G500 allele is more frequent in GBM patients with no defined telomere maintenance mechanism tumors and is associated with poorer survival. PLoS One 6(10):e26737

    PubMed  CAS  Google Scholar 

  143. Sahm F, Capper D, Jeibmann A et al (2012) Addressing diffuse glioma as a systemic brain disease with single-cell analysis. Arch Neurol 69(4):523–526

    PubMed  Google Scholar 

  144. Sahm F, Koelsche C, Meyer J et al (2012) CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol 123(6):853–860

    PubMed  CAS  Google Scholar 

  145. Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154

    PubMed  CAS  Google Scholar 

  146. Sasaki M, Knobbe CB, Itsumi M et al (2012) d-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26(18):2038–2049

    PubMed  CAS  Google Scholar 

  147. Sasaki M, Knobbe CB, Munger JC et al (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659

    PubMed  CAS  Google Scholar 

  148. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231

    PubMed  CAS  Google Scholar 

  149. Seiz M, Tuettenberg J, Meyer J et al (2010) Detection of IDH1 mutations in gliomatosis cerebri, but only in tumors with additional solid component: evidence for molecular subtypes. Acta Neuropathol 120(2):261–267

    PubMed  CAS  Google Scholar 

  150. Sellner L, Capper D, Meyer J et al (2010) Increased levels of 2-hydroxyglutarate in AML patients with IDH1-R132H and IDH2-R140Q mutations. Eur J Haematol 85(5):457–459

    PubMed  Google Scholar 

  151. Seltzer MJ, Bennett BD, Joshi AD et al (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987

    PubMed  CAS  Google Scholar 

  152. Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N (2011) Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am J Pathol 178(3):1395–1402

    PubMed  CAS  Google Scholar 

  153. Sjoblom T, Jones S, Wood LD et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    PubMed  Google Scholar 

  154. Songtao Q, Lei Y, Si G et al (2011) IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci 103(2):269–273

    PubMed  Google Scholar 

  155. Steenweg ME, Jakobs C, Errami A et al (2010) An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Hum Mutat 31(4):380–390

    PubMed  CAS  Google Scholar 

  156. Stockhammer F, Misch M, Helms HJ et al (2012) IDH1/2 mutations in WHO grade II astrocytomas associated with localization and seizure as the initial symptom. Seizure 21(3):194–197

    PubMed  Google Scholar 

  157. Struys EA (2006) d-2-Hydroxyglutaric aciduria: unravelling the biochemical pathway and the genetic defect. J Inherit Metab Dis 29(1):21–29

    PubMed  CAS  Google Scholar 

  158. Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    PubMed  CAS  Google Scholar 

  159. Taal W, Dubbink HJ, Zonnenberg CB et al (2011) First-line temozolomide chemotherapy in progressive low-grade astrocytomas after radiotherapy: molecular characteristics in relation to response. Neuro Oncol 13(2):235–241

    PubMed  CAS  Google Scholar 

  160. Tabatabai G, Hegi M, Stupp R, Weller M (2012) Clinical implications of molecular neuropathology and biomarkers for malignant glioma. Curr Neurol Neurosci Rep 12(3):302–307

    PubMed  CAS  Google Scholar 

  161. Takano S, Kato Y, Yamamoto T et al (2012) Immunohistochemical detection of IDH1 mutation, p53, and internexin as prognostic factors of glial tumors. J Neurooncol 108(3):361–373

    PubMed  CAS  Google Scholar 

  162. Takeuchi T, Watanabe Y, Takano-Shimizu T, Kondo S (2006) Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 235(9):2449–2459

    PubMed  CAS  Google Scholar 

  163. Tefferi A, Jimma T, Sulai NH et al (2011) IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia 26(3):475–480

    PubMed  Google Scholar 

  164. Thon N, Eigenbrod S, Kreth S et al (2012) IDH1 mutations in grade II astrocytomas are associated with unfavorable progression-free survival and prolonged postrecurrence survival. Cancer 118(2):452–460

    PubMed  CAS  Google Scholar 

  165. Tian X, Fang J (2007) Current perspectives on histone demethylases. Acta Biochim Biophys Sin (Shanghai) 39(2):81–88

    CAS  Google Scholar 

  166. Toedt G, Barbus S, Wolter M et al (2011) Molecular signatures classify astrocytic gliomas by IDH1 mutation status. Int J Cancer 128(5):1095–1103

    PubMed  CAS  Google Scholar 

  167. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483

    PubMed  CAS  Google Scholar 

  168. van den Bent MJ, Brandes AA, Taphoorn MJ et al (2013) Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol 31(3):344–350

    PubMed  Google Scholar 

  169. van den Bent MJ, Hartmann C, Preusser M et al (2013) Interlaboratory comparison of IDH mutation detection. J Neurooncol [Epub ahead of print]

  170. Vissers LE, Fano V, Martinelli D et al (2011) Whole-exome sequencing detects somatic mutations of IDH1 in metaphyseal chondromatosis with d-2-hydroxyglutaric aciduria (MC-HGA). Am J Med Genet A 155A(11):2609–2616

    PubMed  Google Scholar 

  171. Wagner K, Damm F, Gohring G et al (2012) Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 28(14):2356–2364

    Google Scholar 

  172. Walker EJ, Zhang C, Castelo-Branco P et al (2012) Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. Cancer Res 72(3):636–644

    PubMed  CAS  Google Scholar 

  173. Wang XW, Boisselier B, Rossetto M et al (2012) Prognostic impact of the isocitrate dehydrogenase 1 single-nucleotide polymorphism rs11554137 in malignant gliomas. Cancer 119(4):806–813

    PubMed  Google Scholar 

  174. Ward PS, Cross JR, Lu C et al (2012) Identification of additional IDH mutations associated with oncometabolite R(-)-2-hydroxyglutarate production. Oncogene 31(19):2491–2498

    PubMed  CAS  Google Scholar 

  175. Ward PS, Lu C, Cross JR et al (2013) The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J Biol Chem 288(6):3804–3815

    PubMed  CAS  Google Scholar 

  176. Ward PS, Patel J, Wise DR et al (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234

    PubMed  CAS  Google Scholar 

  177. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153

    PubMed  CAS  Google Scholar 

  178. Watanabe T, Vital A, Nobusawa S, Kleihues P, Ohgaki H (2009) Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol 117:653–656

    PubMed  CAS  Google Scholar 

  179. Weller M, Felsberg J, Hartmann C et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27(34):5743–5750

    PubMed  CAS  Google Scholar 

  180. Wick W, Hartmann C, Engel C et al (2009) NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine, lomustine, and vincristine or temozolomide. J Clin Oncol 27(35):5874–5880

    PubMed  CAS  Google Scholar 

  181. Williams SC, Karajannis MA, Chiriboga L, Golfinos JG, von Deimling A, Zagzag D (2011) R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1 alpha upregulation in adult glioma. Acta Neuropathol 121(2):279–281

    PubMed  Google Scholar 

  182. Wise DR, Ward PS, Shay JE et al (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108(49):19611–19616

    PubMed  CAS  Google Scholar 

  183. Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253

    PubMed  CAS  Google Scholar 

  184. Xu W, Yang H, Liu Y et al (2010) Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of alpha-Ketoglutarate-Dependent Dioxygenases. Cancer Cell 19(1):17–30

    Google Scholar 

  185. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    PubMed  CAS  Google Scholar 

  186. Yang B, Zhong C, Peng Y, Lai Z, Ding J (2010) Molecular mechanisms of “off-on switch” of activities of human IDH1 by tumor-associated mutation R132H. Cell Res 20(11):1188–1200

    PubMed  CAS  Google Scholar 

  187. Yazici N, Sarialioglu F, Alkan O, Kayaselcuk F, Erol I (2009) Glutaric aciduria type II [corrected] and brain tumors: a case report and review of the literature. J Pediatr Hematol Oncol 31(11):865–869

    PubMed  Google Scholar 

  188. Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29(49):6409–6417

    PubMed  CAS  Google Scholar 

  189. Yip S, Butterfield YS, Morozova O et al (2012) Concurrent CIC mutations, IDH mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers. J Pathol. 226(1):7–16

    PubMed  CAS  Google Scholar 

  190. Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324(5924):261–265

    PubMed  CAS  Google Scholar 

  191. Zhu J, Cui G, Chen M et al (2012) Expression of R132H Mutational IDH1 in Human U87 Glioblastoma Cells Affects the SREBP1a Pathway and Induces Cellular Proliferation. J Mol Neurosci. doi:10.1007/s12031-012-9890-6

Download references

Acknowledgments

CH was supported by National Cancer Institute K08 CA155764-01A1, National Institute of General Medical Sciences 2P20 RR020171, and the University of Kentucky College of Medicine Physician Scientist Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Horbinski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horbinski, C. What do we know about IDH1/2 mutations so far, and how do we use it?. Acta Neuropathol 125, 621–636 (2013). https://doi.org/10.1007/s00401-013-1106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1106-9

Keywords

Navigation