Skip to main content

Advertisement

Log in

Advances in pediatric gliomas: from molecular characterization to personalized treatments

  • REVIEW
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments.

  Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments.

What is Known:

• Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population.

What is New:

• Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas.

• The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer Statistics, 2022. CA A Cancer J Clinicians 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  Google Scholar 

  2. Pollack IF, Agnihotri S, Broniscer A (2019) Childhood brain tumors: current management, biological insights, and future directions. J Neurosurg Pediatr 23(3):261–273. https://doi.org/10.3171/2018.10.PEDS18377

    Article  PubMed  PubMed Central  Google Scholar 

  3. Curtin SC, Minino AM, Anderson RN (2016) Declines in cancer death rates among children and adolescents in the United States, 1999–2014. NCHS Data Brief 257:1–8

    Google Scholar 

  4. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, Stearns DS, Wolff JE, Wolinsky Y, Letterio JJ, Barnholtz-Sloan JS (2015) Alex’s Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16(Suppl 10):x1–x36. https://doi.org/10.1093/neuonc/nou327

    Article  PubMed  Google Scholar 

  5. Collins VP, Jones DT, Giannini C (2015) Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):775–788. https://doi.org/10.1007/s00401-015-1410-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M, Bowers DC, Ellison D, Fangusaro J, Foreman N, Fouladi M, Gajjar A, Haas-Kogan D, Hawkins C, Ho CY, Hwang E, Jabado N, Kilburn LB, Lassaletta A, Ligon KL, Kieran M (2017) Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol 19(6):750–761. https://doi.org/10.1093/neuonc/now209

    Article  CAS  PubMed  Google Scholar 

  7. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, Soffietti R, von Deimling A, Ellison DW (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones DTW, Kieran MW, Bouffet E, Alexandrescu S, Bandopadhayay P, Bornhorst M, Ellison D, Fangusaro J, Fisher MJ, Foreman N, Fouladi M, Hargrave D, Hawkins C, Jabado N, Massimino M, Mueller S, Perilongo G, Schouten van Meeteren AYN, Tabori U, Warren K, Packer RJ (2018) Pediatric low-grade gliomas: next biologically driven steps. Neuro Oncol 20(2):160–173. https://doi.org/10.1093/neuonc/nox141

    Article  CAS  PubMed  Google Scholar 

  9. Collins KL, Pollack IF (2020) Pediatric low-grade gliomas. Cancers 12(5):1152. https://doi.org/10.3390/cancers12051152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shankar A, Bomanji J, Hyare H (2020) Hybrid PET-MRI imaging in paediatric and TYA brain tumours: clinical applications and challenges. J Pers Med 10(4):218. https://doi.org/10.3390/jpm10040218

    Article  PubMed  PubMed Central  Google Scholar 

  11. Koob M, Girard N (2014) Cerebral tumors: specific features in children. Diagn Interv Imaging 95(10):965–983. https://doi.org/10.1016/j.diii.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  12. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I (2019) A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers 11(10):1618. https://doi.org/10.3390/cancers11101618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ryall S, Tabori U, Hawkins C (2020) Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 8(1):30. https://doi.org/10.1186/s40478-020-00902-z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cacciotti C, Fleming A, Ramaswamy V (2020) Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. J Pathol 251(3):249–261. https://doi.org/10.1002/path.5457

    Article  PubMed  Google Scholar 

  15. Ryall S, Zapotocky M, Fukuoka K, Nobre L, Guerreiro Stucklin A, Bennett J, Siddaway R, Li C, Pajovic S, Arnoldo A, Kowalski PE, Johnson M, Sheth J, Lassaletta A, Tatevossian RG, Orisme W, Qaddoumi I, Surrey LF, Li MM, Waanders AJ, Hawkins C (2020) Integrated molecular and clinical analysis of 1,000 pediatric low-grade gliomas. Cancer Cell 37(4):569-583.e5. https://doi.org/10.1016/j.ccell.2020.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jones DT, Kocialkowski S, Liu L, Pearson DM, Bäcklund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Can Res 68(21):8673–8677. https://doi.org/10.1158/0008-5472.CAN-08-2097

    Article  CAS  Google Scholar 

  17. Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R, Guerreiro Stucklin A, Zhukova N, Arnoldo A, Ryall S, Ling C, McKeown T, Loukides J, Cruz O, de Torres C, Ho CY, Packer RJ, Tatevossian R, Qaddoumi I, Harreld JH, Tabori U (2017) Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol 35(25):2934–2941. https://doi.org/10.1200/JCO.2016.71.8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ (2017) Neurofibromatosis type 1. Nat Rev Dis Primers 3:17004. https://doi.org/10.1038/nrdp.2017.4

    Article  PubMed  Google Scholar 

  19. Friedman, JM (1998) Neurofibromatosis 1. In M. P. Adam (Eds) et al. GeneReviews®. University of Washington, Seattle.

  20. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL (2009) Neurofibromatosis type 1 revisited. Pediatr 123(1):124–133. https://doi.org/10.1542/peds.2007-3204

    Article  Google Scholar 

  21. Hirbe AC, Gutmann DH (2014) Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol 13(8):834–843. https://doi.org/10.1016/S1474-4422(14)70063-8

    Article  PubMed  Google Scholar 

  22. Miettinen MM, Antonescu CR, Fletcher CDM, Kim A, Lazar AJ, Quezado MM, Reilly KM, Stemmer-Rachamimov A, Stewart DR, Viskochil D, Widemann B, Perry A (2017) Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol 67:1–10. https://doi.org/10.1016/j.humpath.2017.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH (2020) Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 22(6):773–784. https://doi.org/10.1093/neuonc/noaa036

    Article  PubMed  PubMed Central  Google Scholar 

  24. Soleman J, Dvir R, Ben-Sira L, Yalon M, Boop F, Constantini S, Roth J (2021) MRI-based diagnosis and treatment of pediatric brain tumors: is tissue sample always needed? Child’s Nerv Syst 37(5):1449–1459. https://doi.org/10.1007/s00381-021-05148-1

    Article  Google Scholar 

  25. Bale TA (2020) FGFR-gene family alterations in low-grade neuroepithelial tumors. Acta Neuropathol Commun 8(1):21. https://doi.org/10.1186/s40478-020-00898-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Du Z, Lovly CM (2018) Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer 17(1):58. https://doi.org/10.1186/s12943-018-0782-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10(2):116–129. https://doi.org/10.1038/nrc2780

    Article  CAS  PubMed  Google Scholar 

  28. Tahiri Elousrouti L, Lamchahab M, Bougtoub N, Elfatemi H, Chbani L, Harmouch T, Maaroufi M, Amarti Riffi A (2016) Subependymal giant cell astrocytoma (SEGA): a case report and review of the literature. J Med Case Reports 10:35. https://doi.org/10.1186/s13256-016-0818-6

    Article  Google Scholar 

  29. Jansen AC, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, D’Amato L, Beaure d’Augères G, de Vries PJ, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Lawson JA, Macaya A, Marques R, Nabbout R, O’Callaghan F, Qin J, Kingswood JC (2019) Newly diagnosed and growing subependymal giant cell astrocytoma in adults with tuberous sclerosis complex: results from the International TOSCA Study. Front Neurol 10:821. https://doi.org/10.3389/fneur.2019.00821

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bongaarts A, Giannikou K, Reinten RJ, Anink JJ, Mills JD, Jansen FE, Spliet GMW, den Dunnen WFA, Coras R, Blümcke I, Paulus W, Scholl T, Feucht M, Kotulska K, Jozwiak S, Buccoliero AM, Caporalini C, Giordano F, Genitori L, Söylemezoğlu F, Aronica E (2017) Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 8(56):95516–95529. https://doi.org/10.18632/oncotarget.20764

    Article  PubMed  PubMed Central  Google Scholar 

  31. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355(13):1345–1356. https://doi.org/10.1056/NEJMra055323

    Article  CAS  PubMed  Google Scholar 

  32. Jóźwiak S, Nabbout R, Curatolo P, participants of the TSC Consensus Meeting for SEGA and Epilepsy Management (2013) Management of subependymal giant cell astrocytoma (SEGA) associated with tuberous sclerosis complex (TSC): clinical recommendations. Euro J Paediatr Neuro 17(4):348–352. https://doi.org/10.1016/j.ejpn.2012.12.008

    Article  Google Scholar 

  33. Weidman DR, Pole JD, Bouffet E, Taylor MD, Bartels U (2015) Dose-level response rates of mTor inhibition in tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA). Pediatr Blood Cancer 62(10):1754–1760. https://doi.org/10.1002/pbc.25573

    Article  CAS  PubMed  Google Scholar 

  34. Luo C, Ye WR, Shi W, Yin P, Chen C, He YB, Chen MF, Zu XB, Cai Y (2022) Perfect match: mTOR inhibitors and tuberous sclerosis complex. Orphanet J Rare Dis 17(1):106. https://doi.org/10.1186/s13023-022-02266-0

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Lyons-Weiler MA, LaFramboise WA, Burger PC, Brat DJ, Rosenblum MK, Holmes EJ, Zhou T, Jakacki RI, Children’s Oncology Group (2011) IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Child’s Nerv Syst 27(1):87–94. https://doi.org/10.1007/s00381-010-1264-1

    Article  Google Scholar 

  36. Yeo KK, Alexandrescu S, Cotter JA, Vogelzang J, Bhave V, Li MM, Ji J, Benhamida JK, Rosenblum MK, Bale TA, Bouvier N, Kaneva K, Rosenberg T, Lim-Fat MJ, Ghosh H, Martinez M, Aguilera D, Smith A, Goldman S, Diamond EL, Wright KD (2023) Neuro Oncol 25(1):199–210. https://doi.org/10.1093/neuonc/noac132

    Article  CAS  PubMed  Google Scholar 

  37. Perret C, Boltshauser E, Scheer I, Kellenberger CJ, Grotzer MA (2011) Incidental findings of mass lesions on neuroimages in children. Neurosurg Focus 31(6):E20. https://doi.org/10.3171/2011.9.FOCUS11121

    Article  PubMed  Google Scholar 

  38. Winesett SP, Tuite GF, Jallo G, Carey C, Rodriguez LF, Stapleton S (2019) Incidentally found brain tumors in the pediatric population: a case series and proposed treatment algorithm. J Neuro Oncol 141(2):355–361. https://doi.org/10.1007/s11060-018-03039-1

    Article  CAS  Google Scholar 

  39. de Blank P, Bandopadhayay P, Haas-Kogan D, Fouladi M, Fangusaro J (2019) Management of pediatric low-grade glioma. Curr Opin Pediatr 31(1):21–27. https://doi.org/10.1097/MOP.0000000000000717

    Article  PubMed  PubMed Central  Google Scholar 

  40. Upadhyaya SA, Koschmann C, Muraszko K, Venneti S, Garton HJ, Hamstra DA, Maher CO, Betz BL, Brown NA, Wahl D, Weigelin HC, DuRoss KE, Leonard AS, Robertson PL (2017) Brainstem low-grade gliomas in children-excellent outcomes with multimodality therapy. J Child Neurol 32(2):194–203. https://doi.org/10.1177/0883073816675547

    Article  PubMed  Google Scholar 

  41. Bennett J, Erker C, Lafay-Cousin L, Ramaswamy V, Hukin J, Vanan MI, Cheng S, Coltin H, Fonseca A, Johnston D, Lo A, Zelcer S, Alvi S, Bowes L, Brossard J, Charlebois J, Eisenstat D, Felton K, Fleming A, Jabado N, Bartels U (2020) Canadian Pediatric Neuro-Oncology Standards of Practice. Front Oncol 10:593192

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lassaletta A, Scheinemann K, Zelcer SM, Hukin J, Wilson BA, Jabado N, Carret AS, Lafay-Cousin L, Larouche V, Hawkins CE, Pond GR, Poskitt K, Keene D, Johnston DL, Eisenstat DD, Krishnatry R, Mistry M, Arnoldo A, Ramaswamy V, Huang A, Bouffet E (2016) Phase II weekly vinblastine for chemotherapy-naïve children with progressive low-grade glioma: a Canadian Pediatric Brain Tumor Consortium Study. J Clin Oncol 34(29):3537–3543. https://doi.org/10.1200/JCO.2016.68.1585

    Article  CAS  PubMed  Google Scholar 

  43. Krishnatry R, Zhukova N, Guerreiro Stucklin AS, Pole JD, Mistry M, Fried I, Ramaswamy V, Bartels U, Huang A, Laperriere N, Dirks P, Nathan PC, Greenberg M, Malkin D, Hawkins C, Bandopadhayay P, Kieran MW, Manley PE, Bouffet E, Tabori U (2016) Clinical and treatment factors determining long-term outcomes for adult survivors of childhood low-grade glioma: a population-based study. Cancer 122(8):1261–1269. https://doi.org/10.1002/cncr.29907

    Article  PubMed  Google Scholar 

  44. Perreault S, Larouche V, Tabori U, Hawkin C, Lippé S, Ellezam B, Décarie JC, Théoret Y, Métras MÉ, Sultan S, Cantin É, Routhier MÈ, Caru M, Legault G, Bouffet É, Lafay-Cousin L, Hukin J, Erker C, Jabado N (2019) A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer 19(1):1250. https://doi.org/10.1186/s12885-019-6442-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Selt F, van Tilburg CM, Bison B, Sievers P, Harting I, Ecker J, Pajtler KW, Sahm F, Bahr A, Simon M, Jones DTW, Well L, Mautner VF, Capper D, Hernáiz Driever P, Gnekow A, Pfister SM, Witt O, Milde T (2020) Response to trametinib treatment in progressive pediatric low-grade glioma patients. J Neuro Oncol 149(3):499–510. https://doi.org/10.1007/s11060-020-03640-3

    Article  CAS  Google Scholar 

  46. Gross AM, Wolters PL, Dombi E, Baldwin A, Whitcomb P, Fisher MJ, Weiss B, Kim A, Bornhorst M, Shah AC, Martin S, Roderick MC, Pichard DC, Carbonell A, Paul SM, Therrien J, Kapustina O, Heisey K, Clapp DW, Zhang C, Widemann BC (2020) Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 382(15):1430–1442. https://doi.org/10.1056/NEJMoa1912735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N, Banerjee A, Packer RJ, Kilburn LB, Goldman S, Pollack IF, Qaddoumi I, Jakacki RI, Fisher PG, Dhall G, Baxter P, Kreissman SG, Stewart CF, Jones DTW, Pfister SM, Fouladi M (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20(7):1011–1022. https://doi.org/10.1016/S1470-2045(19)30277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fangusaro J, Onar-Thomas A, Poussaint TY, Wu S, Ligon AH, Lindeman N, Campagne O, Banerjee A, Gururangan S, Kilburn LB, Goldman S, Qaddoumi I, Baxter P, Vezina G, Bregman C, Patay Z, Jones JY, Stewart CF, Fisher MJ, Doyle LA, Fouladi M (2021) A phase II trial of selumetinib in children with recurrent optic pathway and hypothalamic low-grade glioma without NF1: a Pediatric Brain Tumor Consortium study. Neuro Oncol 23(10):1777–1788. https://doi.org/10.1093/neuonc/noab047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hargrave DR, Bouffet E, Tabori U, Broniscer A, Cohen KJ, Hansford JR, Geoerger B, Hingorani P, Dunkel IJ, Russo MW, Tseng L, Dasgupta K, Gasal E, Whitlock JA, Kieran MW (2019) Efficacy and safety of dabrafenib in pediatric patients with BRAF V600 mutation-positive relapsed or refractory low-grade glioma: results from a phase I/IIa study. Clin Cancer Res 25(24):7303–7311. https://doi.org/10.1158/1078-0432.CCR-19-2177

    Article  CAS  PubMed  Google Scholar 

  50. Kieran MW, Geoerger B, Dunkel IJ, Broniscer A, Hargrave D, Hingorani P, Aerts I, Bertozzi AI, Cohen KJ, Hummel TR, Shen V, Bouffet E, Pratilas CA, Pearson ADJ, Tseng L, Nebot N, Green S, Russo MW, Whitlock JA (2019) A phase I and pharmacokinetic study of oral dabrafenib in children and adolescent patients with recurrent or refractory BRAF V600 mutation-positive solid tumors. Clin Cancer Res 25(24):7294–7302. https://doi.org/10.1158/1078-0432.CCR-17-3572

    Article  CAS  PubMed  Google Scholar 

  51. Bouffet E, Hansford JR, Garrè ML, Hara J, Plant-Fox A, Aerts I, Locatelli F, van der Lugt J, Papusha L, Sahm F, Tabori U, Cohen KJ, Packer RJ, Witt O, Sandalic L, Pereira B, da Silva A, Russo M, Hargrave DR (2023) Dabrafenib plus trametinib in pediatric glioma with BRAF V600 mutations. N Engl J Med 389(12):1108–1120. https://doi.org/10.1056/NEJMoa2303815

    Article  CAS  PubMed  Google Scholar 

  52. Nobre L, Zapotocky M, Ramaswamy V, Ryall S, Bennett J, Alderete D, Balaguer Guill J, Baroni L, Bartels U, Bavle A, Bornhorst M, Boue DR, Canete A, Chintagumpala M, Coven SL, Cruz O, Dahiya S, Dirks P, Dunkel IJ, Eisenstat D, Tabori U (2020) Outcomes of BRAF V600E pediatric gliomas treated with targeted BRAF inhibition. JCO Precis Oncol 4:PO.19.00298. https://doi.org/10.1200/PO.19.00298

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dai S, Zhou Z, Chen Z, Xu G, Chen Y (2019) Fibroblast growth factor receptors (FGFRs): structures and small molecule inhibitors. Cells 8(6):614. https://doi.org/10.3390/cells8060614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farouk Sait S, Gilheeney SW, Bale TA, Haque S, Dinkin MJ, Vitolano S, Rosenblum MK, Ibanez K, Prince DE, Spatz KH, Dunkel IJ, Karajannis MA (2021) Debio1347, an oral FGFR inhibitor: results from a single-center study in pediatric patients with recurrent or refractory FGFR-altered gliomas. JCO Precis Oncol 5:PO.20.00444. https://doi.org/10.1200/PO.20.00444

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kilburn LB, Khuong-Quang DA, Hansford JR, Landi D, van der Lugt J, Leary SES, Driever PH, Bailey S, Perreault S, McCowage G, Waanders AJ, Ziegler DS, Witt O, Baxter PA, Kang HJ, Hassall TE, Han JW, Hargrave D, Franson AT, Yalon Oren M, Nysom K (2023) The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial. Nat Med. https://doi.org/10.1038/s41591-023-02668-y

    Article  PubMed  PubMed Central  Google Scholar 

  56. Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, Kachurak K, Nan L, Kang KD, Totsch S, Schlappi C, Martin AM, Pastakia D, McNall-Knapp R, Farouk Sait S, Khakoo Y, Karajannis MA, Woodling K, Palmer JD, Osorio DS, Gillespie GY (2021) Oncolytic HSV-1 G207 Immunovirotherapy for pediatric high-grade gliomas. N Engl J Med 384(17):1613–1622. https://doi.org/10.1056/NEJMoa2024947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu S, Zhao Q, Shi W, Zheng Z, Liu Z, Meng L, Dong L, Jiang X (2021) Advances in radiotherapy and comprehensive treatment of high-grade glioma: immunotherapy and tumor-treating fields. J Cancer 12(4):1094–1104. https://doi.org/10.7150/jca.51107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones C, Perryman L, Hargrave D (2012) Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 9(7):400–413. https://doi.org/10.1038/nrclinonc.2012.87

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Huang TY, Hou Y, Bartom E, Lu X, Shilatifard A, Yue F, Saratsis A (2021) Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. Sci Adv 7(23):eabg4126. https://doi.org/10.1126/sciadv.abg4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koschmann C, Zamler D, MacKay A, Robinson D, Wu YM, Doherty R, Marini B, Tran D, Garton H, Muraszko K, Robertson P, Leonard M, Zhao L, Bixby D, Peterson L, Camelo-Piragua S, Jones C, Mody R, Lowenstein PR, Castro MG (2016) Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma. Oncotarget 7(40):65696–65706. https://doi.org/10.18632/oncotarget.11602

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jones C, Baker SJ (2014) Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer. https://doi.org/10.1038/nrc3811

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mistry M, Zhukova N, Merico D, Rakopoulos P, Krishnatry R, Shago M, Stavropoulos J, Alon N, Pole JD, Ray PN, Navickiene V, Mangerel J, Remke M, Buczkowicz P, Ramaswamy V, Guerreiro Stucklin A, Li M, Young EJ, Zhang C, Castelo-Branco P, Tabori U (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33(9):1015–1022. https://doi.org/10.1200/JCO.2014.58.3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassaletta A, Li C, Bridge T, Kim B, Arnoldo A, Kowalski PE, Zhong Y, Johnson M, Li C, Ramani AK, Siddaway R, Nobre LF, de Antonellis P, Dunham C, Cheng S, Boué DR, Hawkins C (2019) Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10(1):4343. https://doi.org/10.1038/s41467-019-12187-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Braunstein S, Raleigh D, Bindra R, Mueller S, Haas-Kogan D (2017) Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neurooncol 134(3):541–549. https://doi.org/10.1007/s11060-017-2393-0

    Article  CAS  PubMed  Google Scholar 

  65. Reulecke BC, Erker CG, Fiedler BJ, Niederstadt TU, Kurlemann G (2008) Brain tumors in children: initial symptoms and their influence on the time span between symptom onset and diagnosis. J Child Neurol 23(2):178–183. https://doi.org/10.1177/0883073807308692

    Article  PubMed  Google Scholar 

  66. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, Temelso S, Popov S, Molinari V, Raman P, Waanders AJ, Han HJ, Gupta S, Marshall L, Zacharoulis S, Vaidya S, Jones C (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520-537.e5. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bechet D, Gielen GG, Korshunov A, Pfister SM, Rousso C, Faury D, Fiset PO, Benlimane N, Lewis PW, Lu C, David Allis C, Kieran MW, Ligon KL, Pietsch T, Ellezam B, Albrecht S, Jabado N (2014) Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 128(5):733–741. https://doi.org/10.1007/s00401-014-1337-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cohen KJ, Jabado N, Grill J (2017) Diffuse intrinsic pontine gliomas-current management and new biologic insights. Is there a glimmer of hope? Neuro Oncol 19(8):1025–1034. https://doi.org/10.1093/neuonc/nox021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Buccoliero AM, Giunti L, Moscardi S, Castiglione F, Provenzano A, Sardi I, Scagnet M, Genitori L, Caporalini C (2022) Pediatric high grade glioma classification criteria and molecular features of a case series. Genes 13(4):624. https://doi.org/10.3390/genes13040624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Baker SJ, Ellison DW, Gutmann DH (2016) Pediatric gliomas as neurodevelopmental disorders. Glia 64(6):879–895. https://doi.org/10.1002/glia.22945

    Article  PubMed  Google Scholar 

  71. Gouda MA, Subbiah V (2023) Expanding the benefit: dabrafenib/trametinib as tissue-agnostic therapy for BRAF V600E-positive adult and pediatric solid tumors. Am Soc Clin Oncol Educ Book. Annual Meeting 43:e404770. https://doi.org/10.1200/EDBK_404770

    Article  Google Scholar 

  72. Rallis KS, George AM, Wozniak AM, Bigogno CM, Chow B, Hanrahan JG, Sideris M (2022) Molecular genetics and targeted therapies for paediatric high-grade glioma. Cancer Genom Proteomics 19(4):390–414. https://doi.org/10.21873/cgp.20328

    Article  CAS  Google Scholar 

  73. Bax DA, Gaspar N, Little SE, Marshall L, Perryman L, Regairaz M, Viana-Pereira M, Vuononvirta R, Sharp SY, Reis-Filho JS, Stávale JN, Al-Sarraj S, Reis RM, Vassal G, Pearson AD, Hargrave D, Ellison DW, Workman P, Jones C (2009) EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin Cancer Res 15(18):5753–5761. https://doi.org/10.1158/1078-0432.CCR-08-3210

    Article  CAS  PubMed  Google Scholar 

  74. Cheng F, Guo D (2019) MET in glioma: signaling pathways and targeted therapies. Journal of experimental & clinical cancer research : CR 38(1):270. https://doi.org/10.1186/s13046-019-1269-x

    Article  CAS  PubMed Central  Google Scholar 

  75. Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, Wang K, Wang Z, Nam Y, Jiang B, Sa JK, Cho HJ, Her NG, Zhang C, Zhao Z, Zhang Y, Zeng F, Wu F, Kang X, Liu Y, Jiang T (2018) Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell 175(6):1665-1678.e18. https://doi.org/10.1016/j.cell.2018.09.038

    Article  CAS  PubMed  Google Scholar 

  76. Rosenberg T, Yeo KK, Mauguen A, Alexandrescu S, Prabhu SP, Tsai JW, Malinowski S, Joshirao M, Parikh K, Farouk Sait S, Rosenblum MK, Benhamida JK, Michaiel G, Tran HN, Dahiya S, Kachurak K, Friedman GK, Krystal JI, Huang MA, Margol AS, Karajannis MA (2022) Upfront molecular targeted therapy for the treatment of BRAF-mutant pediatric high-grade glioma. Neuro Oncol 24(11):1964–1975. https://doi.org/10.1093/neuonc/noac096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hargrave DR, Terashima K, Hara J, Kordes UR, Upadhyaya SA, Sahm F, Bouffet E, Packer RJ, Witt O, Sandalic L, Kieloch A, Russo M, Cohen KJ, Investigators involved in the high-grade glioma cohort, (2023) Phase II trial of dabrafenib plus trametinib in relapsed/refractory BRAF V600-mutant pediatric high-grade glioma. J Clinical Oncol 41(33):5174–5183. https://doi.org/10.1200/JCO.23.00558

    Article  CAS  Google Scholar 

  78. Hall MD, Odia Y, Allen JE, Tarapore R, Khatib Z, Niazi TN, Daghistani D, Schalop L, Chi AS, Oster W, Mehta MP (2019) First clinical experience with DRD2/3 antagonist ONC201 in H3 K27M-mutant pediatric diffuse intrinsic pontine glioma: a case report. J Neurosurg Pediatr 23(6):719–725. https://doi.org/10.3171/2019.2.PEDS18480

    Article  PubMed  Google Scholar 

  79. Gardner SL, Tarapore RS, Allen J, McGovern SL, Zaky W, Odia Y, Daghistani D, Diaz Z, Hall MD, Khatib Z, Koschmann C, Cantor E, Kurokawa R, MacDonald TJ, Aguilera D, Vitanza NA, Mueller S, Kline C, Lu G, Allen JE, Khatua S (2022) Phase I dose escalation and expansion trial of single agent ONC201 in pediatric diffuse midline gliomas following radiotherapy. Neuro Oncol Adv 4(1):vdac143. https://doi.org/10.1093/noajnl/vdac143

    Article  Google Scholar 

  80. Chi AS, Tarapore RS, Hall MD, Shonka N, Gardner S, Umemura Y, Sumrall A, Khatib Z, Mueller S, Kline C, Zaky W, Khatua S, Weathers SP, Odia Y, Niazi TN, Daghistani D, Cherrick I, Korones D, Karajannis MA, Kong XT, Mehta MP (2019) Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201. J Neuro Oncol 145(1):97–105. https://doi.org/10.1007/s11060-019-03271-3

    Article  CAS  Google Scholar 

  81. Venneti S, Kawakibi AR, Ji S, Waszak SM, Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, Ramage S, Chi A, Wen PY, Arrillaga-Romany I, Batchelor TT, Butowski NA, Sumrall A, Shonka N, Harrison RA, de Groot J, Koschmann C (2023) Clinical efficacy of ONC201 in H3K27M-mutant diffuse midline gliomas is driven by disruption of integrated metabolic and epigenetic pathways. Cancer Discov 13(11):2370–2393. https://doi.org/10.1158/2159-8290.CD-23-0131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Himes BT, Zhang L, Daniels DJ (2019) Treatment strategies in diffuse midline gliomas with the H3K27M mutation: the role of convection-enhanced delivery in overcoming anatomic challenges. Front Oncol 9:31. https://doi.org/10.3389/fonc.2019.00031

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tejada S, Aquilina K, Goodden J, Pettorini B, Mallucci C, van Veelen ML, Thomale UW (2020) Biopsy in diffuse pontine gliomas: expert neurosurgeon opinion-a survey from the SIOPE brain tumor group. Child’s Nerv Syst 36(4):705–711. https://doi.org/10.1007/s00381-020-04523-8

    Article  Google Scholar 

  84. Lassman AB, Sepúlveda-Sánchez JM, Cloughesy TF, Gil-Gil MJ, Puduvalli VK, Raizer JJ, De Vos FYF, Wen PY, Butowski NA, Clement PMJ, Groves MD, Belda-Iniesta C, Giglio P, Soifer HS, Rowsey S, Xu C, Avogadri F, Wei G, Moran S, Roth P (2022) Infigratinib in patients with recurrent gliomas and FGFR alterations: a multicenter phase II study. Clin Cancer Res 28(11):2270–2277. https://doi.org/10.1158/1078-0432.CCR-21-2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zarei M, Hue JJ, Hajihassani O, Graor HJ, Katayama ES, Loftus AW, Bajor D, Rothermel LD, Vaziri-Gohar A, Winter JM (2022) Clinical development of IDH1 inhibitors for cancer therapy. Cancer Treat Rev 103:102334. https://doi.org/10.1016/j.ctrv.2021.102334

    Article  CAS  PubMed  Google Scholar 

  86. Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, Mendez J, Yust-Katz S, Welsh L, Mason WP, Ducray F, Umemura Y, Nabors B, Holdhoff M, Hottinger AF, Arakawa Y, Sepulveda JM, Wick W, Soffietti R, Perry JR, Trial Investigators INDIGO (2023) Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med 389(7):589–601. https://doi.org/10.1056/NEJMoa2304194

    Article  CAS  PubMed  Google Scholar 

  87. Karajannis M, Onar-Thomas A, Baxter P, Butingan N, Fuller C, Gajjar A, Haque S, Jabado N, Lin T, Lucas J, MacDonald S, Matsushima C, Patel N, Pierson C, Springer L, Stark E, Souweidane M, Walsh M, Zaky W, Fouladi M, Cohen K (2022) HGG-06. Phase 2 study of veliparib and local irradiation, followed by maintenance veliparib and temozolomide, in patients with newly diagnosed high-grade glioma without H3 K27M or BRAF mutations: a report from the Children’s Oncology Group ACNS1721 Study. Neuro Oncol 24(Suppl 1):i60–i61. https://doi.org/10.1093/neuonc/noac079.222

    Article  PubMed Central  Google Scholar 

  88. Chan CY, Tan KV, Cornelissen B (2021) PARP inhibitors in cancer diagnosis and therapy. Clin Cancer Res 27(6):1585–1594. https://doi.org/10.1158/1078-0432.CCR-20-2766

    Article  CAS  PubMed  Google Scholar 

  89. International Cancer Genome Consortium PedBrain Tumor Project (2016) Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nat Med 22(11):1314–1320. https://doi.org/10.1038/nm.4204

    Article  CAS  Google Scholar 

  90. Foster JH, Voss SD, Hall DC, Minard CG, Balis FM, Wilner K, Berg SL, Fox E, Adamson PC, Blaney SM, Weigel BJ, Mossé YP (2021) Activity of crizotinib in patients with ALK-aberrant relapsed/refractory neuroblastoma: a Children’s Oncology Group Study (ADVL0912). Clin Cancer Res 27(13):3543–3548. https://doi.org/10.1158/1078-0432.CCR-20-4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Broniscer A, Jia S, Mandrell B, Hamideh D, Huang J, Onar-Thomas A, Gajjar A, Raimondi SC, Tatevossian RG, Stewart CF (2018) Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr Blood Cancer 65(7):e27035. https://doi.org/10.1002/pbc.27035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palmer JD, Tsang DS, Tinkle CL, Olch AJ, Kremer LCM, Ronckers CM, Gibbs IC, Constine LS (2021) Late effects of radiation therapy in pediatric patients and survivorship. Pediatr Blood Cancer 68(Suppl 2):e28349. https://doi.org/10.1002/pbc.28349

    Article  PubMed  Google Scholar 

  93. Duffner PK, Horowitz ME, Krischer JP, Burger PC, Cohen ME, Sanford RA, Friedman HS, Kun LE (1999) The treatment of malignant brain tumors in infants and very young children: an update of the Pediatric Oncology Group experience. Neuro Oncol 1(2):152–161. https://doi.org/10.1093/neuonc/1.2.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laetsch TW, DuBois SG, Mascarenhas L, Turpin B, Federman N, Albert CM, Nagasubramanian R, Davis JL, Rudzinski E, Feraco AM, Tuch BB, Ebata KT, Reynolds M, Smith S, Cruickshank S, Cox MC, Pappo AS, Hawkins DS (2018) Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol 19(5):705–714. https://doi.org/10.1016/S1470-2045(18)30119-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, Nathenson M, Doebele RC, Farago AF, Pappo AS, Turpin B, Dowlati A, Brose MS, Mascarenhas L, Federman N, Berlin J, El-Deiry WS, Baik C, Deeken J, Boni V, Hyman DM (2018) Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378(8):731–739. https://doi.org/10.1056/NEJMoa1714448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Doz F, van Tilburg CM, Geoerger B, Højgaard M, Øra I, Boni V, Capra M, Chisholm J, Chung HC, DuBois SG, Gallego-Melcon S, Gerber NU, Goto H, Grilley-Olson JE, Hansford JR, Hong DS, Italiano A, Kang HJ, Nysom K, Thorwarth A, Perreault S (2022) Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol 24(6):997–1007. https://doi.org/10.1093/neuonc/noab274

    Article  CAS  PubMed  Google Scholar 

  97. Desai AV, Robinson GW, Gauvain K, Basu EM, Macy ME, Maese L, Whipple NS, Sabnis AJ, Foster JH, Shusterman S, Yoon J, Weiss BD, Abdelbaki MS, Armstrong AE, Cash T, Pratilas CA, Corradini N, Marshall LV, Farid-Kapadia M, Chohan S, Fox E (2022) Entrectinib in children and young adults with solid or primary CNS tumors harboring NTRK, ROS1, or ALK aberrations (STARTRK-NG). Neuro Oncol 24(10):1776–1789. https://doi.org/10.1093/neuonc/noac087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Drilon A, Siena S, Ou SI, Patel M, Ahn MJ, Lee J, Bauer TM, Farago AF, Wheler JJ, Liu SV, Doebele R, Giannetta L, Cerea G, Marrapese G, Schirru M, Amatu A, Bencardino K, Palmeri L, Sartore-Bianchi A, Vanzulli A, De Braud FG (2017) Safety and antitumor activity of the multitargeted Pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372–001 and STARTRK-1). Cancer Discov 7(4):400–409. https://doi.org/10.1158/2159-8290.CD-16-1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Waldman AD, Fritz JM, Lenardo MJ (2020) A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 20(11):651–668. https://doi.org/10.1038/s41577-020-0306-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu S, Tang L, Li X, Fan F, Liu Z (2020) Immunotherapy for glioma: current management and future application. Cancer Lett 476:1–12. https://doi.org/10.1016/j.canlet.2020.02.002

    Article  CAS  PubMed  Google Scholar 

  101. Sener U, Ruff MW, Campian JL (2022) Immunotherapy in glioblastoma: current approaches and future perspectives. Int J Mol Sci 23(13):7046. https://doi.org/10.3390/ijms23137046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, Wong F, Azad NS, Rucki AA, Laheru D, Donehower R, Zaheer A, Fisher GA, Crocenzi TS, Lee JJ, Greten TF, Diaz LA Jr (2017) Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Sci (New York, N.Y.) 357(6349):409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  Google Scholar 

  103. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, Durno C, Krueger J, Cabric V, Ramaswamy V, Zhukova N, Mason G, Farah R, Afzal S, Yalon M, Rechavi G, Magimairajan V, Walsh MF, Constantini S, Dvir R, Tabori U (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34(19):2206–2211. https://doi.org/10.1200/JCO.2016.66.6552

    Article  CAS  Google Scholar 

  104. AlHarbi M, Ali Mobark N, AlMubarak L, Aljelaify R, AlSaeed M, Almutairi A, Alqubaishi F, Hussain ME, Balbaid AAO, Said Marie A, AlSubaie L, AlShieban S, alTassan, N., Ramkissoon, S. H., & Abedalthagafi, M. (2018) Durable response to nivolumab in a pediatric patient with refractory glioblastoma and constitutional biallelic mismatch repair deficiency. Oncologist 23(12):1401–1406. https://doi.org/10.1634/theoncologist.2018-0163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Rittberg R, Harlos C, Rothenmund H, Das A, Tabori U, Sinha N, Singh H, Chodirker B, Kim CA (2021) Immune checkpoint inhibition as primary adjuvant therapy for an IDH1-mutant anaplastic astrocytoma in a patient with CMMRD: a case report-usage of immune checkpoint inhibition in CMMRD. Current Oncol (Toronto, Ont.) 28(1):757–766. https://doi.org/10.3390/curroncol28010074

    Article  Google Scholar 

  106. Westdorp H, Kolders S, Hoogerbrugge N, de Vries IJM, Jongmans MCJ, Schreibelt G (2017) Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome. Cancer Lett 403:159–164. https://doi.org/10.1016/j.canlet.2017.06.018

    Article  CAS  PubMed  Google Scholar 

  107. Kim K, Kim HS, Kim JY, Jung H, Sun JM, Ahn JS, Ahn MJ, Park K, Lee SH, Choi JK (2020) Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat Commun 11(1):951. https://doi.org/10.1038/s41467-020-14562-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, Zhong J (2021) Neoantigen: a new breakthrough in tumor immunotherapy. Front Immunol 12:672356. https://doi.org/10.3389/fimmu.2021.672356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.S. and S.R. conceptualized the article. The original draft was completed by S.S., M.M., and S.R., under supervision by S.R. All authors critically reviewed and edited the manuscript.

Corresponding author

Correspondence to Samuele Renzi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by Gregorio Milani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathyakumar, S., Martinez, M., Perreault, S. et al. Advances in pediatric gliomas: from molecular characterization to personalized treatments. Eur J Pediatr (2024). https://doi.org/10.1007/s00431-024-05540-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00431-024-05540-4

Keywords

Navigation