Skip to main content

Advertisement

Log in

Efficient Removal of Dyes from Aqueous Solution by a Porous Sodium Alginate/gelatin/graphene Oxide Triple-network Composite Aerogel

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) robust sodium alginate/gelatin/graphene oxide (SGGO) triple-network composite aerogel was designed using a “hydrophilic assembly–sustained release gelation” two-step method. The resulting SGGO aerogel has an ordered fishing net-like microstructure, low density (16.2 mg/cm3), high porosity (93.5%), and abundant functional groups when only 3 wt% GO was incorporated. The reinforced mechanical strength can reach 0.37 MPa and 0.12 MPa under dry and wet states, respectively, and the dry strength can still reach 0.31 MPa without a significant loss after five compression cycles. A batch adsorption experiment was performed as a function of pH, contact time and initial concentration. Adsorption behavior followed the pseudo second-order kinetic model and Langmuir isotherm, yielding the maximum monolayer adsorption capacity of 322.6 mg/g and 196.8 mg/g for Methylene blue (MB) and Congo red (CR), respectively. Moreover, thermodynamic studies indicated a spontaneous and endothermic adsorption process. After five regeneration cycles, the adsorption capacity can reach 88.4% and 86.5% of the initial values for MB and CR, demonstrating a high-performance, recyclable and promising candidate for dye wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dai L, Zhu W, He L, Tan F, Zhu N, Zhou Q, He M, Hu G (2018) Calcium-rich biochar from crab shell: an unexpected super adsorbent for dye removal. Bioresour Technol 267:510–516

    Article  CAS  PubMed  Google Scholar 

  2. Song W, Gao B, Xu X, Xing L, Han S, Duan P, Song W, Jia R (2016) Adsorption–desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresour Technol 210:123–130

    Article  CAS  PubMed  Google Scholar 

  3. Aroguz AZ, Gulen J, Evers R (2008) Adsorption of methylene blue from aqueous solution on pyrolyzed petrified sediment. Bioresour Technol 99(6):1503–1508

    Article  CAS  PubMed  Google Scholar 

  4. Huang H, Liu J, Zhang P, Zhang D, Gao F (2017) Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem Eng J 307:696–706

    Article  CAS  Google Scholar 

  5. El Samrani AG, Lartiges BS, Villieras F (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res 42(4–5):951–960

    Article  PubMed  CAS  Google Scholar 

  6. Wang L (2009) Aqueous organic dye discoloration induced by contact glow discharge electrolysis. J Hazard Mater 171(1–3):577–581

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Zhao B, Tang P, Cao Z, Huang M, Tan S (2014) Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. Carbon 77:113–121

    Article  CAS  Google Scholar 

  8. Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22(6):3725–3738

    Article  CAS  Google Scholar 

  9. Barquist K, Larsen SC (2010) Chromate adsorption on bifunctional, magnetic zeolite composites. Micropor Mesopor Mat 130(1–3):197–202

    Article  CAS  Google Scholar 

  10. Gesser H, Goswami P (1989) Aerogels and related porous materials. Chem Rev 89(4):765–788

    Article  CAS  Google Scholar 

  11. Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37(1–2):22–45

    Google Scholar 

  12. Jiao C, Xiong J, Tao J, Xu S, Zhang D, Lin H, Chen Y (2016) Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. Int J Biol Macromol 83:133–141

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481

    Article  CAS  PubMed  Google Scholar 

  14. Rocher V, Siaugue J-M, Cabuil V, Bee A (2008) Removal of organic dyes by magnetic alginate beads. Water Res 42(4–5):1290–1298

    Article  CAS  PubMed  Google Scholar 

  15. Pettignano A, Tanchoux N, Cacciaguerra T, Vincent T, Bernardi L, Guibal E, Quignard F (2017) Sodium and acidic alginate foams with hierarchical porosity: preparation, characterization and efficiency as a dye adsorbent. Carbohyd Polym 178:78–85

    Article  CAS  Google Scholar 

  16. Deze EG, Papageorgiou SK, Favvas EP, Katsaros FK (2012) Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: effect of porosity in Cu2+ and Cd2+ ion sorption. Chem Eng J 209:537–546

    Article  CAS  Google Scholar 

  17. Wan Y, Chen X, Xiong G, Guo R, Luo H (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Materials Express 4(5):429–434

    Article  CAS  Google Scholar 

  18. Liu S, Li Y, Li L (2017) Enhanced stability and mechanical strength of sodium alginate composite films. Carbohyd Polym 160:62–70

    Article  CAS  Google Scholar 

  19. Zhu T, Teng K, Shi J, Chen L, Xu Z (2016) A facile assembly of 3D robust double network graphene/polyacrylamide architectures via γ-ray irradiation. Compos Sci Technol 123:276–285

    Article  CAS  Google Scholar 

  20. Zu G, Kanamori K, Shimizu T, Zhu Y, Maeno A, Kaji H, Nakanishi K, Shen J (2018) Versatile double-cross-linking approach to transparent, machinable, supercompressible, highly bendable aerogel thermal superinsulators. Chem Mater 30(8):2759–2770

    Article  CAS  Google Scholar 

  21. Bao Z, Xian C, Yuan Q, Liu G, Wu J (2019) natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv Healthc Mater 8(17):1900670

    Article  CAS  Google Scholar 

  22. Liu G, Yuan Q, Hollett G, Zhao W, Kang Y, Wu J (2018) Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym Chem 9(25):3436–3449

    Article  CAS  Google Scholar 

  23. May M, Wang H, Akid R (2010) Effects of the addition of inorganic nanoparticles on the adhesive strength of a hybrid sol–gel epoxy system. Int J Adhes 30(6):505–512

    Article  CAS  Google Scholar 

  24. Wang C, Xiong Y, Fan B, Yao Q, Wang H, Jin C, Sun Q (2016) Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance. Sound-absorption Therm Insulation Sci Rep 6:32383

    Google Scholar 

  25. Lin N, Meng Z, Toh GW, Zhen Y, Diao Y, Xu H, Liu XY (2015) Engineering of fluorescent emission of silk fibroin composite materials by material assembly. Small 11(9–10):1205–1214

    Article  CAS  PubMed  Google Scholar 

  26. Tabata Y, Ikada Y (1998) Protein release from gelatin matrices. Adv Drug Deliver Rev 31(3):287–301

    Article  CAS  Google Scholar 

  27. Liu C, Liu H, Xu A, Tang K, Huang Y, Lu C (2017) In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal. J Alloy Compound 714:522–529

    Article  CAS  Google Scholar 

  28. Jiang J, Zhang Q, Zhan X, Chen F (2019) A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem Eng J 358:1539–1551

    Article  CAS  Google Scholar 

  29. Devi N, Kakati DK (2013) Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. J Food Eng 117(2):193–204

    Article  CAS  Google Scholar 

  30. He Y, Zhang N, Gong Q, Qiu H, Wang W, Liu Y, Gao J (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohyd Polym 88(3):1100–1108

    Article  CAS  Google Scholar 

  31. Marrella A, Lagazzo A, Barberis F, Catelani T, Quarto R, Scaglione S (2017) Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon 115:608–616

    Article  CAS  Google Scholar 

  32. Fan L, Ge H, Zou S, Xiao Y, Wen H, Li Y, Feng H, Nie M (2016) Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int J Biol Macromol 93:582–590

    Article  CAS  PubMed  Google Scholar 

  33. Yun Y, Wu H, Gao J, Dai W, Deng L, Lv O, Kong Y (2020) Facile synthesis of Ca2+-crosslinked sodium alginate/graphene oxide hybrids as electro- and pH-responsive drug carrier. Mat Sci Eng 108:110380

    Article  CAS  Google Scholar 

  34. Valentini L, Rescignano N, Puglia D, Cardinali M (2015) Kenny J (2015) Preparation of alginate/graphene oxide hybrid films and their integration in triboelectric generators. Eur J Inorg Chem 7:1192–1197

    Article  CAS  Google Scholar 

  35. Feng J, Ding H, Yang G, Wang R, Li S, Liao J, Li Z, Chen D (2017) Preparation of black-pearl reduced graphene oxide-sodium alginate hydrogel microspheres for adsorbing organic pollutants. J Colloid Interf Sci 508:387–395

    Article  CAS  Google Scholar 

  36. Ma J, Jiang Z, Cao J, Yu F (2019) Enhanced adsorption for the removal of antibiotics by carbon nanotubes/graphene oxide/sodium alginate triple-network nanocomposite hydrogels in aqueous solutions. Chemosphere 242:125188

    Article  PubMed  CAS  Google Scholar 

  37. Mohammadi A, Doctorsafaei AH, Zia KM (2018) Alginate/calix[4]arenes modified graphene oxide nanocomposite beads: preparation, characterization, and dye adsorption studies. Int J Biol Macromol 120:1353–1361

    Article  CAS  PubMed  Google Scholar 

  38. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  39. Ingar DK, Kjetill Ø, Olav S (1989) Alginate-based solid media for plant tissue culture. Appl Microbiol Biot 31:79–83

    Google Scholar 

  40. Shan S, Tang H, Zhao Y, Wang W, Cui F (2019) Highly porous zirconium-crosslinked graphene oxide/alginate aerogel beads for enhanced phosphate removal. Chem Eng J 359:779–789

    Article  CAS  Google Scholar 

  41. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8(8):2533–2541

    Article  CAS  Google Scholar 

  42. Yang C, Xu L, Zhou Y, Zhang X, Huang X, Wang M, Han Y, Zhai M, Wei S, Li J (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohyd Polym 82(4):1297–1305

    Article  CAS  Google Scholar 

  43. Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357

    Article  CAS  PubMed  Google Scholar 

  44. Kim KH, Oh Y, Islam M (2012) Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nanotechnol 7(9):562

    Article  CAS  PubMed  Google Scholar 

  45. Liu C, Liu H, Xiong T, Xu A, Pan B, Tang K (2018) Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal. Polymers (Basel) 10(8):835

    Article  PubMed Central  CAS  Google Scholar 

  46. Piao Y, Chen B (2017) Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int J Biol Macromol 101:791–798

    Article  CAS  PubMed  Google Scholar 

  47. Shan C, Wang L, Li Z, Zhong X, Hou Y, Zhang L, Shi F (2019) Graphene oxide enhanced polyacrylamide-alginate aerogels catalysts. Carbohydr Polym 203:19–25

    Article  CAS  PubMed  Google Scholar 

  48. Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3(3):432–442

    Article  CAS  Google Scholar 

  49. Aldegs Y, Elbarghouthi M, Elsheikh A, Walker G (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigm 77(1):16–23

    Article  CAS  Google Scholar 

  50. Tiwari JN, Mahesh K, Le NH, Kemp KC, Timilsina R, Tiwari RN, Kim KS (2013) Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon 56:173–182

    Article  CAS  Google Scholar 

  51. Huang X, Liao X, Shi B (2009) Hg (II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. J Hazard Mater 170(2–3):1141–1148

    Article  CAS  PubMed  Google Scholar 

  52. Jiao C, Tao J, Xiong J, Wang X, Zhang D, Lin H, Chen Y (2017) In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater. Cellulose 24(6):2591–2604

    Article  CAS  Google Scholar 

  53. Tao J, Xiong J, Jiao C, Zhang D, Lin H, Chen Y (2016) Hybrid Mesoporous Silica Based on Hyperbranch-Substrate Nanonetwork as Highly Efficient Adsorbent for Water Treatment. ACS Sustain Chem Eng 4(1):60–68

    Article  CAS  Google Scholar 

  54. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  55. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28(22):8418–8425

    Article  CAS  PubMed  Google Scholar 

  56. Kumar KV, Kumaran A (2005) Removal of methylene blue by mango seed kernel powder. Biochem Eng J 27(1):83–93

    Article  CAS  Google Scholar 

  57. Nollet H, Roels M, Lutgen P, Van der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53(6):655–665

    Article  CAS  PubMed  Google Scholar 

  58. Kuo CY, Wu CH, Wu JY (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. J Colloid Interface Sci 327(2):308–315

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 51803004), Talent Project of Anhui Agricultural University (yj2018-18) and University Natural Science Research Project of Anhui Province (KJ2016A236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenlu Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Li, T., Wang, J. et al. Efficient Removal of Dyes from Aqueous Solution by a Porous Sodium Alginate/gelatin/graphene Oxide Triple-network Composite Aerogel. J Polym Environ 28, 1492–1502 (2020). https://doi.org/10.1007/s10924-020-01702-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01702-1

Keywords

Navigation