Skip to main content
Log in

In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

We fabricated a new MnO2-loaded biocomposite based on microcrystalline cellulose (MCC–MnO2) by an in situ synthesis method and investigated its adsorption behavior and mechanism for Pb2+ removal from aqueous medium. As-prepared MCC–MnO2 was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses. The effects of pH value, initial Pb2+ concentration, contact time, and solution temperature on the uptake of Pb2+ onto MCC–MnO2 were investigated using a batch system. Adsorption equilibrium could be achieved in 3 h for various studied initial concentrations, and a pseudo-second-order model could fit the adsorption behavior well. The equilibrium data could be well described by the Langmuir isotherm model, and the maximum monolayer adsorption capacity of MCC–MnO2 (with 7.98% MnO2 loading) for Pb2+ was estimated to be 247.5 mg/g at 313 K. Thermodynamic studies indicated a spontaneous and endothermic adsorption process. X-ray photoelectron spectroscopy (XPS) was used to analyze the adsorption mechanism, revealing that the chemical speciation of Pb2+ on MCC–MnO2 was similar to the compound PbO. Moreover, no variations in the valence of Mn were observed after adsorbing Pb2+. The regeneration study showed that the adsorption capacity retained about 89.6% of its initial value at the fifth sequential regeneration cycle, indicating that this material is an efficient and renewable hybrid adsorbent for Pb2+ removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • ATSDR C (2007) CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry

  • Banks EC, Ferretti LE, Shucard D (1996) Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology 18:237–281

    Google Scholar 

  • Bellmann C, Caspari A, Albrecht V, Doan TTL, Mäder E, Luxbacher T, Kohl R (2005) Electrokinetic properties of natural fibres. Colloid Surf A Physicochem Eng Asp 267:19–23

    Article  CAS  Google Scholar 

  • Berrima B, Maatar W, Mortha G, Boufi S, El Aloui L, Belgacem M (2016) Adsorption of heavy metals on charcoal from lignin. Cellul Chem Technol 50:701–709

    CAS  Google Scholar 

  • Biniak S, Pakula M, Szymanski G, Swiatkowski A (1999) Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper (II) ions from aqueous solution. Langmuir 15:6117–6122

    Article  CAS  Google Scholar 

  • Catts JG, Langmuir D (1986) Adsorption of Cu, Pb and Zn by δMnO2: applicability of the site binding-surface complexation model. Appl Geochem 1:255–264

    Article  CAS  Google Scholar 

  • Chacón-Patiño ML, Blanco-Tirado C, Hinestroza JP, Combariza MY (2013) Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation. Green Chem 15:2920

    Article  Google Scholar 

  • Chansuvarn W, Jainae K (2015) Adsorption of Pb(II) from aqueous solution onto manganese oxide-modified laterite soil. In: 2015 international conference on science and technology (TICST). IEEE, pp 198–205

  • Chen H, He J (2008) Facile synthesis of monodisperse manganese oxide nanostructures and their application in water treatment. J Phys Chem C 112:17540–17545

    Article  CAS  Google Scholar 

  • Deliyanni EA, Nalbandian L, Matis KA (2006) Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent. J Colloid Interface Sci 302:458–466

    Article  CAS  Google Scholar 

  • Deng X, Lü L, Li H, Luo F (2010) The adsorption properties of Pb(II) and Cd (II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183:923–930

    Article  CAS  Google Scholar 

  • Duan C, Zhao N, Yu X, Zhang X, Xu J (2013) Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. Cellulose 20:849–860

    Article  CAS  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  • Espinal L, Suib SL, Rusling JF (2004) Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2. J Am Chem Soc 126:7676–7682

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:1100–1107

    Google Scholar 

  • Han R, Zou W, Zhang Z, Shi J, Yang J (2006) Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. J Hazard Mater 137:384–395

    Article  CAS  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  • Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  • Hernández RB, Yola OR, Mercê ALR (2007) Chemical equilibrium in the complexation of first transition series divalent cations Cu2+, Mn2+ and Zn2+ with chitosan. J Braz Chem Soc 18:1388–1396

    Article  Google Scholar 

  • Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

  • Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M (2014) Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  • Hu Y, Wang J, Jiang X, Zheng Y, Chen Z (2013) Facile chemical synthesis of nanoporous layered δ-MnO2 thin film for high-performance flexible electrochemical capacitors. Appl Surf Sci 271:193–201

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Ibrahim MM, El-Zawawy WK, Jüttke Y, Koschella A, Heinze T (2013) Cellulose and microcrystalline cellulose from rice straw and banana plant waste: preparation and characterization. Cellulose 20:2403–2416

    Article  CAS  Google Scholar 

  • Inglezakis V, Loizidou M, Grigoropoulou H (2002) Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res 36:2784–2792

    Article  CAS  Google Scholar 

  • Kinniburgh DG (1986) General purpose adsorption isotherms. Environ Sci Technol 20:895–904

    Article  CAS  Google Scholar 

  • Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150:280–287

    Article  CAS  Google Scholar 

  • Kumar KV, Kumaran A (2005) Removal of methylene blue by mango seed kernel powder. Biochem Eng J 27:83–93

    Article  CAS  Google Scholar 

  • Li CC, Zhang W, Ang H, Yu H, Xia BY, Wang X, Yang YH, Zhao Y, Hng HH, Yan Q (2014) Compressed hydrogen gas-induced synthesis of Au–Pt core-shell nanoparticle chains towards high-performance catalysts for Li–O2 batteries. J Mater Chem A 2:10676–10681

    Article  CAS  Google Scholar 

  • Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J Phys Chem C 112:5307–5315

    Article  CAS  Google Scholar 

  • Lu Q, Tang L, Lin F, Wang S, Chen Y, Chen X, Huang B (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21:3497–3506

    Article  CAS  Google Scholar 

  • Maliyekkal SM, Lisha KP, Pradeep T (2010) A novel cellulose-manganese oxide hybrid material by in situ soft chemical synthesis and its application for the removal of Pb(II) from water. J Hazard Mater 181:986–995

    Article  CAS  Google Scholar 

  • Markowitz M (2000) Lead poisoning. Pediatr Rev 21(10):327–335

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025

    Article  CAS  Google Scholar 

  • Matlock MM, Howerton BS, Atwood DA (2002) Chemical precipitation of lead from lead battery recycling plant wastewater. Ind Eng Chem Res 41:1579–1582

    Article  CAS  Google Scholar 

  • Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    Article  CAS  Google Scholar 

  • Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  CAS  Google Scholar 

  • Nguyen-Phan T-D, Pham VH, Kim EJ, Oh E-S, Hur SH, Chung JS, Lee B, Shin EW (2012) Reduced graphene oxide–titanate hybrids: morphologic evolution by alkali-solvothermal treatment and applications in water purification. Appl Surf Sci 258:4551–4557

    Article  CAS  Google Scholar 

  • Pang X, He Y, Jung J, Lin Z (2016) 1D nanocrystals with precisely controlled dimensions, compositions, and architectures. Science 353:1268–1272

    Article  CAS  Google Scholar 

  • Pelosi BT, Lima LKS, Vieira MGA (2014) Removal of the synthetic dye Remazol Brilliant Blue R from textile industry wastewaters by biosorption on the macrophyte Salvinia natans. Braz J Chem Eng 31:1035–1045

    Article  Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  • Qin Q, Wang Q, Fu D, Ma J (2011) An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chem Eng J 172:68–74

    Article  CAS  Google Scholar 

  • Ren Y, Yan N, Feng J, Ma J, Wen Q, Li N, Dong Q (2012) Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater Chem Phys 136:538–544

    Article  CAS  Google Scholar 

  • Senthilkumaar S, Kalaamani P, Porkodi K, Varadarajan PR, Subburaam CV (2006) Adsorption of dissolved reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresour Technol 97:1618–1625

    Article  CAS  Google Scholar 

  • Shah B, Shah A, Singh R (2009) Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int J Environ Sci Technol 6:77–90

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  CAS  Google Scholar 

  • Tan IA, Ahmad AL, Hameed BH (2008) Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. J Hazard Mater 154:337–346

    Article  CAS  Google Scholar 

  • Tao J, Xiong J, Jiao C, Zhang D, Lin H, Chen Y (2016) Hybrid mesoporous silica based on hyperbranch-substrate nanonetwork as highly efficient adsorbent for water treatment. ACS Sustain Chem Eng 4:60–68

    Article  CAS  Google Scholar 

  • Uragami T, Tsukamoto K, Miyata T, Heinze T (1999) Permeation and separation characteristics for benzene/cyclohexane mixtures through tosylcellulose membranes in pervaporation. Cellulose 6:221–231

    Article  CAS  Google Scholar 

  • Visa M, Chelaru A-M (2014) Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Appl Surf Sci 303:14–22

    Article  CAS  Google Scholar 

  • Wang S, Gong W, Liu X, Yao Y, Gao B, Yue Q (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–23

    Article  CAS  Google Scholar 

  • Xiong J, Jiao C, Li C, Zhang D, Lin H, Chen Y (2014) A versatile amphiprotic cotton fiber for the removal of dyes and metal ions. Cellulose 21:3073–3087

    Article  CAS  Google Scholar 

  • Xu M, Wang H, Lei D, Qu D, Zhai Y, Wang Y (2013) Removal of Pb(II) from aqueous solution by hydrous manganese dioxide: adsorption behavior and mechanism. J Environ Sci 25:479–486

    Article  CAS  Google Scholar 

  • Yang Z-C, Tang C-H, Gong H, Li X, Wang J (2013) Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. J Power Sour 240:713–720

    Article  CAS  Google Scholar 

  • Yin X, Zhang X, Lin Q, Feng Y, Yu W, Zhang Q (2004) Metal-coordinating controlled oxidative degradation of chitosan and antioxidant activity of chitosan-metal complex. Arkivoc 9:66–78

    Google Scholar 

  • Zhao J, Liu J, Li N, Wang W, Nan J, Zhao Z, Cui F (2016) Highly efficient removal of bivalent heavy metals from aqueous systems by magnetic porous Fe3O4–MnO2: adsorption behavior and process study. Chem Eng J 304:737–746

    Article  CAS  Google Scholar 

  • Zou W, Han R, Chen Z, Shi J, Hongmin L (2006) Characterization and properties of manganese oxide coated zeolite as adsorbent for removal of copper(II) and lead(II) ions from solution. J Chem Eng Data 51:534–541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 51403141), the Graduate Student Innovation Project of Jiangsu Province (no. KYLX16_0134), and the Natural Science Foundation of Jiangsu Province (no. BK20140347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyue Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 805 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, C., Tao, J., Xiong, J. et al. In situ synthesis of MnO2-loaded biocomposite based on microcrystalline cellulose for Pb2+ removal from wastewater. Cellulose 24, 2591–2604 (2017). https://doi.org/10.1007/s10570-017-1271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1271-4

Keywords

Navigation