Skip to main content

Advertisement

Log in

Nanoarchitectonics and Electrochemical Behavior of Cu Doped h-MoO3 as an Electrode Material for Energy Storage Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

With the objective of development of electrochemical charge storage devices, currently the research in this field is centred on the study of MoO3 nanoparticles doped with copper as an efficient supercapacitor electrode material. The synthesized nanoparticles were examined by powder X-ray diffraction which determined the metastable hexagonal phase of MoO3 and their morphologies were examined using scanning electron microscopy displaying regularly arranged well-defined microrods. The typical vibrational bands of Mo–O were identified from Infra-red and Raman spectral analysis. The ultra violet diffuse reflectance spectra revealed the decrease in optical band gap from 2.96 to 2.78 eV with an increase in Cu concentration. The surface area was recorded to be higher for 5% wt Cu doped nanoparticles (14 m2/g) which was examined from Brunauer–Emmett–Teller (BET) isotherms. Electrochemical behaviour of the nanoparticles was probed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy measurements for which a maximum specific capacitance (Csp) value of 530 Fg−1 was achieved for 5% wt Cu doped MoO3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Khamlich, T. Khamliche, M.S. Dhlamini, M. Khenfouch, B.M. Mothudi, M. Maaza, J. Colloid Interface Sci. 493, 130 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. F. Hasnain, M. Irfan, M.M. Khan, L.A. Khan, H.F. Ahmed, J. Energy Storage 38, 102513 (2021)

    Article  Google Scholar 

  4. M. Sajjad, J. Inorg. Organomet. Polym. Mater. 31, 3221 (2021)

    Article  CAS  Google Scholar 

  5. S. Maji, R.G. Shrestha, J. Lee, S.A. Han, J.P. Hill, J.H. Kim, K. Ariga, L.K. Shrestha, Bull. Chem. Soc. Jpn. 94, 1502 (2021)

    Article  CAS  Google Scholar 

  6. M.Z. Iqbal, U. Aziz, J. Energy Storage 46, 103823 (2022)

    Article  Google Scholar 

  7. X. Zhang, Y. Xu, D. Li, Y. Zhang, Electrochim. Acta 283, 149 (2018)

    Article  CAS  Google Scholar 

  8. P.M. Shafi, R. Dhanabal, A. Chithambararaj, S. Velmathi, A.C. Bose, A.C.S. Sustain, Chem. Eng. 5, 4757 (2017)

    CAS  Google Scholar 

  9. M.D. Patil, S.D. Dhas, A.A. Mane, A.V. Moholkar, Mater. Sci. Semicond. Process. 133, 105978 (2021)

    Article  CAS  Google Scholar 

  10. O.C. Pore, A.V. Fulari, N.B. Velha, V.G. Parale, H.H. Park, R.V. Shejwal, V.J. Fulari, G.M. Lohar, Mater. Sci. Semicond. Process. 134, 105980 (2021)

    Article  CAS  Google Scholar 

  11. A. Zhang, R. Gao, L. Hu, X. Zang, R. Yang, S. Wang, S. Yao, Z. Yang, H. Hao, Y.M. Yan, Chem. Eng. J. 417, 129186 (2021)

    Article  CAS  Google Scholar 

  12. N. Zhao, H. Fan, M. Zhang, J. Ma, Z. Du, B. Yan, H. Li, X. Jiang, Chem. Eng. J. 390, 124477 (2020)

    Article  CAS  Google Scholar 

  13. A.S. Patil, M.D. Patil, G.M. Lohar, S.T. Jadhav, V.J. Fulari, Ionics 23, 259 (2017)

    Article  Google Scholar 

  14. C.C. Huang, W. Xing, S.P. Zhuo, Scr. Mater. 61, 985 (2009)

    Article  CAS  Google Scholar 

  15. S. Vijayakumar, A.K. Ponnalagi, S. Nagamuthu, G. Muralidharan, Electrochim. Acta 106, 500 (2013)

    Article  CAS  Google Scholar 

  16. S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Small 10, 2270 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. I. Shakir, M. Shahid, H.W. Yang, D.J. Kang, Electrochim. Acta 56, 376 (2010)

    Article  CAS  Google Scholar 

  18. W. Sugimoto, T. Ohnuma, Y. Murakami, Y. Takasu, Electrochem. Solid-State Lett. 4, A145 (2001)

    Article  CAS  Google Scholar 

  19. B.N. Rashmi, S.F. Harlapur, C.R. Ravikumar, B. Avinash, K. Gurushantha, M.B. Divakara, M.S. Santosh, K. Veena, Mater. Today 46, 5931 (2021)

    CAS  Google Scholar 

  20. A.H. Pato, A. Balouch, E. Alveroglu, J.A. Buledi, S. Lal, D. Mal, J. Electrochem. Soc. 168, 056503 (2021)

    Article  Google Scholar 

  21. J. Jiang, J. Liu, S. Peng, D. Qian, D. Luo, Q. Wang, Y. Liu, J. Mater. Chem. A 1, 2588 (2013)

    Article  CAS  Google Scholar 

  22. R. Malik, N. Joshib, V.K. Tomer, Mater. Adv. 2, 4190 (2021)

    Article  CAS  Google Scholar 

  23. V. Kumar, X. Wang, P.S. Lee, CrystEngComm 15, 7663 (2013)

    Article  CAS  Google Scholar 

  24. Dhananjeyan, G., Angamuthuraj, C., Bose, A. C., Dhulipala, V.R.S.: Effect of Ni doping in pure h-MoO3. In: SIWAN-2013At Anna University, Chennai (2013). https://doi.org/10.13140/2.1.3897.0244.

  25. H.R. Barai, N.S. Lopa, F. Ahmed, N.A. Khan, S.A. Ansari, S.W. Joo, M.M. Rahman, ACS Omega 5, 22356 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A.N.P. Raj, R.B. Bennie, C. Joel, S.H. Kengaram, S.D. Abraham, Solid State Comm. 341, 114532 (2022)

    Article  Google Scholar 

  27. A.L. Al-Alotaibi, N. Altamimi, E. Howsawi, K.A. Elsayed, I. Massoudi, A.E. Ramadan, J. Inorg. Organomet. Polym. Mater. 31, 2017 (2021)

    Article  CAS  Google Scholar 

  28. A.N.P. Raj, R.B. Bennie, G. Xavier, C. Joel, D.A. Chelliah, S.H. Kengaram, J. Clust. Sci. (2021). https://doi.org/10.1007/s10876-021-02164-8

    Article  Google Scholar 

  29. M. Raja, R. Marnadu, M. Balaji, K. Ravikumar, V.G. Krishna, M. Kumar, E.E. Massoud, Inorg. Chem. Comm. 139, 109291 (2022)

    Article  CAS  Google Scholar 

  30. N. Kumar, R. Kumar, Mater. Chem. Phys. 275, 125211 (2022)

    Article  CAS  Google Scholar 

  31. H.J. Lunk, H. Hartl, M.A. Hartl, M.J.G. Fait, I.G. Shenderovich, M. Feist, T.A. Frisk, L.L. Daemen, D. Mauder, R. Eckelt, A.A. Gurinov, Inorg. Chem. 49, 9400 (2010). https://doi.org/10.1021/ic101103g

    Article  CAS  PubMed  Google Scholar 

  32. A. Chithambararaj, A.C. Bose, J. Alloys Compd. 509, 8105 (2011)

    Article  CAS  Google Scholar 

  33. H.S. Yogananda, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, B.D. Prasad, M.K. Sateesh, G.K. Raghu, J. Alloys Compd. 745, 874 (2018)

    Article  CAS  Google Scholar 

  34. R. Veerasubam, S. Muthukumaran, Mater. Res. Express 6, 045006 (2019)

    Article  Google Scholar 

  35. G.T. Santos, A.A. Felix, M.O. Orlandi, Surfaces 4, 9 (2021)

    Article  CAS  Google Scholar 

  36. P. Almodóvar, M.L. López, J. Ramírez-Castellanos, S. Nappini, E. Magnano, J.M. González-Calbet, C. Díaz-Guerra, Electrochim. Acta 365, 137355 (2021)

    Article  Google Scholar 

  37. H.J. Lunk, H. Hartl, M.A. Hartl, M.J. Fait, I.G. Shenderovich, M. Feist, A.A. Gurinov, Inorg. Chem. 49, 9400 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. A. Chithambararaj, N.S. Sanjini, A. Chandra Bose, S. Velmathi, Catal. Sci. Technol. 3, 1405 (2013)

    Article  CAS  Google Scholar 

  39. K.M. Mamatha, C.R. Ravikumar, H.A. Murthy, V.D. Kumar, A.N. Kumar, A.A. Jahagirdar, Sens. Int. 3, 100153 (2022)

    Article  Google Scholar 

  40. X. Wang, W.S. Liu, X. Lu, P.S. Lee, J. Mater. Chem. 22, 23114 (2012)

    Article  CAS  Google Scholar 

  41. J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2, 14925 (2007)

    Article  Google Scholar 

  42. K. Xu, R. Zou, W. Li, Y. Xue, G. Song, Q. Liu, J. Hu, J. Mater. Chem. A 1, 9107 (2013)

    Article  CAS  Google Scholar 

  43. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, A.C.S. Appl, Mater. Interfaces 4, 4484 (2012)

    Article  CAS  Google Scholar 

  44. W. Xu, S. Dai, G. Liu, Y. Xi, C. Hu, X. Wang, Electrochim. Acta 203, 1 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the management of St. John’s College, Tirunelveli and PMT College, Tenkasi, Tamil Nadu for providing the lab facilities to carry out this research work. Also we would like to thank Dr. B. Saravanakumar, Materials Research Laboratory, Dr. Mahalingam College of Engineering and Technology, Pollachi, for the electrochemical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Joel or S. Hari Kengaram.

Ethics declarations

Conflict of interest

The authors declare there are no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, A.N.P., Adinaveen, T., Bennie, R.B. et al. Nanoarchitectonics and Electrochemical Behavior of Cu Doped h-MoO3 as an Electrode Material for Energy Storage Applications. J Inorg Organomet Polym 32, 4284–4294 (2022). https://doi.org/10.1007/s10904-022-02439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02439-1

Keywords

Navigation