Skip to main content
Log in

Synthesis and electrochemical properties of CuCo2O4@Co3O4 nanocomposite for supercapacitor application

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Transition metal oxide–based pseudocapacitors with various valence states are of particular interest in the field of energy storage due to their increased specific capacitance values. In particular, Copper cobaltite nanomaterials have attracted more research focus due to their multiple oxidation states in comparison to other transition metals. Spinel structures of metal oxides are of tremendous interest for energy storage applications. Mixed valence metal cations in spinel cobaltites (MCo2O4) offer more electronic conductivity and electrochemical activity than single–component oxides. Natural abundance, good electrical and thermal stability, environment–friendly nature, and low cost motivates researchers for carrying out an extensive study of such materials. In this study, binary composite CuCo2O4@Co3O4 was synthesized by facile hydrothermal method. FT–IR, XRD, FEG–SEM and XPS studies have established the successful formation of all the nanocomposites were used to primarily characterize the sample. XRD showed the existence of all the synthesized materials in crystalline form. Cyclic voltammetry (CV), Galvanostatic Charge–Discharge (GCD) and Electrochemical Impedance (EIS) measurements were recorded to examine the electrochemical characteristics. The comparative specific capacitance of the synthesized CuCo2O4@Co3O4 nanocomposite displayed 542.77 Fg−1 using Glassy Carbon (GCE) as the working electrode whereas it exhibited 683.72 Fg−1 at the same current density of 1 Ag−1 using Nickel foam as the electrode substrate. The composite electrode exhibited an excellent pseudocapacitive behaviour using 1 M Na2SO4 and 1 M KOH as electrolytes respectively for electrochemical measurements. Impedance analysis reveals capacitive nature of the synthesized materials. Furthermore, cyclic stability for CuCo2O4@Co3O4 nanocomposite was found to be 76% (GCE) upto 1000 cycles at 5 Ag−1 and 78% (Nickel foam) upto 3000 cycles at 5 Ag−1. Based on the study of the electrochemical performance, the synthesized transition metal oxide nanocomposite holds potency as an efficient electrode material for energy storage applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhong Y, Xia X, Mai W, Tu J, Fan HJ (2017) Integration of energy harvesting and electrochemical storage devices. Adv Mater Technol 2:1–14. https://doi.org/10.1002/admt.201700182

    Article  CAS  Google Scholar 

  2. Krishnan SG, Reddy M, Harilal M, Vidyadharan B, Jose R (2015) Characterization of MgCo2O4 as an electrode for high performance supercapacitors. Electrochim Acta 161:312–321. https://doi.org/10.1016/j.electacta.2015.02.081

    Article  CAS  Google Scholar 

  3. Chen Hu, Xuming Du, Runze Wu, Ya W, Sun J, Zhang Y, Chunju Xu (2023) Facile hydrothermal synthesis of porous MgCo2O4 nanoflakes as electrode material for high–performance asymmetric supercapacitors. Nanoscale Adv. https://doi.org/10.1039/D3NA00462G

    Article  PubMed  PubMed Central  Google Scholar 

  4. Shanmugavalli V, Vishista K (2020) An investigation on the supercapacitive performance of CuCo2O4/Polyaniline, a nanocomposite of spinel structured transition binary metal oxide and conducting polymer, with a special focus on bonding and electron density distribution through MEM. J Inorg Organomet Polym Mater 30:1448–1462. https://doi.org/10.1007/s10904-019-01268-z

    Article  CAS  Google Scholar 

  5. Dakshayini BS, Reddy KR, Mishra A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu Anjanapura V (2019) Role of conducting polymer and metal oxide–based hybrids for applications in amperometric sensors and biosensors. Microchem J 147:7–24. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  6. Duan L, Gao F, Wang L, Jin S, Wu H (2013) Hydrothermal synthesis and characterization of MnCo2O4 in the low-temperature hydrothermal process: Their magnetism and electrochemical properties. J Adv Ceram 2:266–273. https://doi.org/10.1007/S40145-013-0070-0

    Article  CAS  Google Scholar 

  7. Li Y, Hou X, Li Y, Qiang Ru, Shaofeng WH, Shejun L, Kwok-Ho, (2017) Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-nanostructural morphology as anode electrodes for lithium-ion batteries. Electron Mater Lett 13:427–433. https://doi.org/10.1007/s13391-017-6258-7

    Article  CAS  Google Scholar 

  8. Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 5:2045–2054. https://doi.org/10.1039/C2NR33576J

    Article  CAS  PubMed  Google Scholar 

  9. Silambarasan M, Padmanathan N, Ramesh PS, Geetha D (2016) Spinel CuCo2O4 Nanoparticles: facile one-step synthesis, optical, and electrochemical properties. Mater Res Express 3:1–10. https://doi.org/10.1088/2053-1591/3/9/095021

    Article  CAS  Google Scholar 

  10. Wang Q, Xu J, Wang X (2014) Core-Shell CuCo2O4@MnO2 Nanowires on carbon fabrics as high-performance materials for flexible, all–solid–state, electrochemical capacitors. Chem Electro Chem 1:559–564. https://doi.org/10.1002/CELC.201300084

    Article  Google Scholar 

  11. Pendashteh A, Moosavifard Seyyed E, Rahmanifar Mohammad S, Yue W (2015) Highly ordered mesoporous CuCo2O4 nanowires, a promising solution for high-performance supercapacitors. Chem Mater 27:3919–3926. https://doi.org/10.1021/acs.chemmater.5b00706

    Article  CAS  Google Scholar 

  12. Jang GS, Ameen S, Akhtar MS, Kim E, Shin HS (2017) Electrochemical investigations of hydrothermally synthesized porous cobalt oxide (Co3O4) nanorods: supercapacitor application. ChemistrySelect 2:8941–8949. https://doi.org/10.1002/slct.201701571

    Article  CAS  Google Scholar 

  13. Hasan I, Alharthi FA (2023) Synthesis of Cobalt Oxide (Co3O4) Nanoparticles for efficient photocatalytic water splitting and hydrogen production. ChemistrySelect 8:202302685. https://doi.org/10.1002/SLCT.202302685

    Article  Google Scholar 

  14. Wang Q, Jiang M, Zhang L (2021) Label–free and visible–light driven photoelectrochemical sensor with CuCo2O4@CoO Core-shell hybrid rod as photoanode for selective sensing diclofenac. Electrochim Acta 397:139239. https://doi.org/10.1016/j.electacta.2021.139239

    Article  CAS  Google Scholar 

  15. Jiang F, Su Q, Li H, Yao L, Deng H, Du G (2017) Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. J Chem Eng 314:301–310. https://doi.org/10.1016/J.CEJ.2016.11.064

    Article  CAS  Google Scholar 

  16. Das D, Jyoti SB (2022) Synthesis, characterization and biological applications of cobalt oxide (Co3O4) nanoparticles. Chem Phys Impact 6:1–3. https://doi.org/10.1016/j.chphi.2022.100137

    Article  Google Scholar 

  17. Sivashanmugam G, Lakshmi K, Preethi B, Nelson S, Sathiyaseelan M (2021) CTAB-templated formation of CuCo2O4/CuO nanorods and nanosheets for high-performance supercapacitor applications. J Mater Sci Mater Electron 32:27148–27158. https://doi.org/10.1007/S10854-021-06845-Y

    Article  CAS  Google Scholar 

  18. Patil KN, Prasad D, Bhanushali D, Kim JT, Atar H, Nagaraja AB, Jadhav BM (2020) Sustainable hydrogen generation by catalytic hydrolysis of NaBH4 using tailored nanostructured urchin-like CuCo2O4 spinel catalyst. Catal Letters 150:586–604. https://doi.org/10.1007/S10562-019-03025-W

    Article  CAS  Google Scholar 

  19. Huerta F, Cazorla–amor D, Morall E, (2019) Copper-doped cobalt spinel electrocatalysts evolution reaction. Materials 12:1302. https://doi.org/10.3390/ma12081302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaverlavani SK, Moosavifard SE, Bakouei A (2017) Designing graphene-wrapped nanoporous CuCo2O4 hollow spheres electrodes for high-performance asymmetric supercapacitors. J Mater Chem A Mater 5:14301–14309. https://doi.org/10.1039/c7ta03943c

    Article  CAS  Google Scholar 

  21. Chen X, Zhu J, Ding Y, Zuo X (2021) Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium–ion batteries. J Mater Sci Mater Electron 32:18765–18776. https://doi.org/10.1007/s10854-021-06395-3

    Article  CAS  Google Scholar 

  22. Chen H, Liu Y, Sun J, Xu C (2021) High–performance hybrid supercapacitor based on the porous copper cobaltite/cupric oxide nanosheets as a battery–type positive electrode material. Int J Hydrog Energy 46:28144–28155. https://doi.org/10.1016/j.ijhydene.2021.06.056

    Article  CAS  Google Scholar 

  23. Mahala C, Basu M (2017) Nanosheets of NiCo2O4/NiO as efficient and stable electrocatalyst for oxygen evolution reaction. ACS Omega 2:7559–7567. https://doi.org/10.1021/acsomega.7b00957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Al JBA, Abu-Rayyan A, Taher MM, Shoueir K (2022) Photosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega 7:23673–23684. https://doi.org/10.1021/acsomega.2c02305

    Article  CAS  Google Scholar 

  25. Qi J, Chen D, Wang W, Sui Y, He Y (2019) Facile synthesis of N–doped activated carbon derived from cotton and CuCo2O4 nanoneedle arrays electrodes for all-solid-state asymmetric supercapacitor. J Mater Chem A Mater 30:9877–9887. https://doi.org/10.1007/s10854-019-01325-w

    Article  CAS  Google Scholar 

  26. Javed MS, Dai S, Wang M, Yi Xi (2015) Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid–state supercapacitors. Nanoscale 7:13610–13618. https://doi.org/10.1039/C5NR03363B

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Hu Y, Wang Z, Lin T, Xi Z (2020) Lithiation-induced vacancy engineering of Co3O4 with improved faradic reactivity for high-performance supercapacitor. Adv Funct Mater 30:2004172. https://doi.org/10.1002/adfm.202004172

    Article  CAS  Google Scholar 

  28. Nawaz B, Ullah MO, Ali G (2014) An investigation of the electrochemical properties of CuCo2O4@NiCo2O4 composite as binder-free electrodes of a supercapacitor. Energies (Basel) 14:3237. https://doi.org/10.3390/en14113237

    Article  CAS  Google Scholar 

  29. Wang X, Ding H, Luo Wei Yu, Yi CQ, LuO B, Xie M, Guo X (2023) Morphology evolution of CoNi-LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability. EcoEnergy 1:448–459. https://doi.org/10.1002/ece2.21

    Article  Google Scholar 

  30. Chang K, Zhang P, Chen X (2024) Research on modification and electrochemical properties of zinc-doped spherical CuO nanomaterials. J Solid State Electrochem. https://doi.org/10.1007/s10008-023-05796-0

    Article  Google Scholar 

  31. Yumeng L, Li Li, Liangliang Z, Gengxu H, Liu Z, Jiaxing H, Zhu Z, Qiao ZA (2023) Emulsion-assisted interfacial polymerization strategy: controllable architectural engineering of anisotropic and isotropic nanoparticles for high-performance supercapacitors. Battery Energy 2:20220058. https://doi.org/10.1002/bte2.20220058

    Article  CAS  Google Scholar 

  32. Qui K, Lu Y, Cheng J, Yan H, LuO Y (2015) Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high—performance supercapacitors. Electrochim Acta 157:62–68. https://doi.org/10.1016/j.electacta.2014.12.035

    Article  CAS  Google Scholar 

  33. Gao Q, Wang J, Wang J (2019) Morphology-controllable synthesis of CuCo2O4 arrays on Ni foam as advanced electrodes for supercapacitors. J Alloys Compd 789:193–200. https://doi.org/10.1016/j.jallcom.2019.03.041

    Article  CAS  Google Scholar 

  34. Franklin J, Sachin S, Sundaram S, Anand G, Raj A, Kaviyarasu K (2019) Investigation on copper cobaltite (CuCo2O4) and its composite with activated carbon (AC) for supercapacitor applications. Mater Sci Energy Technol 7:91–98. https://doi.org/10.1016/j.mset.2023.07.006

    Article  CAS  Google Scholar 

  35. Madhu R, Veeramani V, Shen C, Manikandan A, An-Ya Lo, Chueh Yu (2015) Honeycomb-like porous carbon-cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl Mater Interfaces 7:15812–15820. https://doi.org/10.1021/acsami.5b04132

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Yin S, Jiang J, Xiao H, Li X (2020) A tightly packed Co3O4/C&S composite for high-performance electrochemical supercapacitors from a cobalt (III) cluster-based coordination precursor. J Solid State Electrochem. https://doi.org/10.1016/j.jssc.2020.121435

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly thank Micro–Analytical Laboratory, Department of Chemistry, University of Mumbai for providing Instrumental facilities. The authors also thank IIT Bombay for providing XRD, XPS measurements and SEM analysis. One author, Bhakti G. Thali, is grateful to Savitribai Jyotirao Phule Single Girl Child Fellowship (SJSGC) UGC, Delhi, India for JRF.

Author information

Authors and Affiliations

Authors

Contributions

Bhakti G. Thali: Methodology, Formal analysis, Investigation, Writing–original draft. Prof. Rajesh M. Kamble: Conceptualization, Investigation, Visualization, Resources, Supervision, Writing–Review and Editing.

Corresponding author

Correspondence to Rajesh M. Kamble.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Binary composite CuCo2O4@Co3O4 has been synthesized by hydrothermal method.

• CuCo2O4@Co3O4 nanocomposite displayed specific capacitance 542.77 Fg−1 using GCE and 683.72 Fg−1 using Nickel Foam at the current density of 1 Ag−1.

• CuCo2O4@Co3O4 nanocomposite exhibited 78% (Nickel Foam) and 76% (GCE) capacitive retention respectively up to 3000 and 1000 cycles at the current density of 5 Ag−1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thali, B.G., Kamble, R.M. Synthesis and electrochemical properties of CuCo2O4@Co3O4 nanocomposite for supercapacitor application. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05909-3

Keywords

Navigation