Skip to main content

Advertisement

Log in

Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Supercapacitors (SCs) have been widely exploited as a promising energy storage system due to their unique merits, including fast charge/discharge rates, long-term cycling stability and low maintenance cost. Therefore, researchers are focused on designing novel nanostructures with high surface area, optimum pore size and volume, and porous structure are highly desirable. Silicon dioxide (SiO2) has recently attracted enormous research attention as the electrode materials for SCs due to ease fabrication and integration possibility. However, due to the intrinsically poor electrical conductivity of metal oxides and the short diffusion distance of electrolytes into pseudocapacitor electrodes, only the surface of electroactive materials can effectively contribute to the total capacitance, while the large portion of material underneath the surface could hardly participate in the electrochemical charge storage process, leading to areal specific capacitance (ASC) values lower than expected. The coating of SiO2 has been recognized as a possible route to reduce the resistance and increase durability. Still, even for coated electrodes, the performance has always been several orders of magnitudes below that of carbon-based SCs. The morphology, structure, and particle size of SiO2 are related to the synthesis conditions and electrochemical performances. The thin films of SiO2 nanostructures deposited on conductive substrates and their composites both shows good performance (binder free electrodes). SiO2 and its composites display a large potential window for asymmetric SCs, delivering high energy density. More importantly, the design and development of composite materials with novel nanostructures are also effective ways to enhance the electrochemical properties of SCs. In this review, the research progress of SiO2 based composite electrodes for SCs are briefly reviewed. Consequently, the possible developmental direction, challenges, and opportunities for SiO2 based composite are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X.Y. Yu, X.W. Lou, Mixed metal sulfides for electrochemical energy storage and conversion. Adv. Energy Mater. 8(3), 1701592 (2018)

    Article  CAS  Google Scholar 

  2. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nanosci. Technol. 18, 320–329 (2010)

    Google Scholar 

  4. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. M. Wohlfahrt-Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, J. Garche, New materials for supercapacitors. J. Power Sources 105(2), 182–188 (2002)

    Article  CAS  Google Scholar 

  6. A.L. Despotuli, A.V. Andreeva, Nanoionics: new materials and supercapacitors. Nanotechnol Russia 5(7), 506–520 (2010)

    Article  Google Scholar 

  7. Q. Li, Y. Xu, S. Zheng, X. Guo, H. Xue, H. Pang, Recent progress in some amorphous materials for supercapacitors. Small 14(28), 1800426 (2018)

    Article  CAS  Google Scholar 

  8. C. Wang, P. Sun, G. Qu, J. Yin, X. Xu, Nickel/cobalt based materials for supercapacitors. Chin. Chem. Lett. 29(12), 1731–1740 (2018)

    Article  CAS  Google Scholar 

  9. D. Portehault, S. Cassaignon, N. Nassif, E. Baudrin, J.P. Jolivet, A core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angewandte Chemie Int. Ed. 47(34), 6441–6444 (2008)

    Article  CAS  Google Scholar 

  10. T. Hyeon, Chemical synthesis of magnetic nanoparticles. Chem. Commun. 8, 927–934 (2003)

    Article  CAS  Google Scholar 

  11. Y. Liu, G. Zhou, K. Liu, Y. Cui, Design of complex nanomaterials for energy storage: past success and future opportunity. Acc. Chem. Res. 50(12), 2895–2905 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. Q. Zhang, E. Uchaker, S.L. Candelaria, G. Cao, Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 42(7), 3127–3171 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Zhu, L. Peng, Z. Fang, C. Yan, X. Zhang, G. Yu, Structural engineering of 2D nanomaterials for energy storage and catalysis. Adv. Mater. 30(15), 1706347 (2018)

    Article  CAS  Google Scholar 

  14. F.T. Li, J. Ran, M. Jaroniec, S.Z. Qiao, Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7(42), 17590–17610 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. C. Chen, Y. Fan, J. Gu, L. Wu, S. Passerini, L. Mai, One-dimensional nanomaterials for energy storage. J. Phys. D 51(11), 113002 (2018)

    Article  CAS  Google Scholar 

  16. M. Burgess, J.S. Moore, J. Rodríguez-López, Redox active polymers as soluble nanomaterials for energy storage. Acc. Chem. Res. 49(11), 2649–2657 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. P.J. Holliman, A. Connell, E.W. Jones, C.P. Kershaw, Metal oxide oxidation catalysts as scaffolds for perovskite solar cells. Materials 13(4), 949 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  18. B. Boro, B. Gogoi, B.M. Rajbongshi, A. Ramchiary, Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renew. Sustain. Energy Rev. 81, 2264–2270 (2018)

    Article  CAS  Google Scholar 

  19. T.J. Macdonald, D.D. Tune, M.R. Dewi, C.T. Gibson, J.G. Shapter, T. Nann, A TiO2 nanofiber–carbon nanotube-composite photoanode for improved efficiency in dye-sensitized solar cells. Chemsuschem 8(20), 3396–3400 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. J.C. Védrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. Chemsuschem 12(3), 577–588 (2019)

    Article  PubMed  CAS  Google Scholar 

  21. A. Baral, L. Satish, D.P. Das, H. Sahoo, M.K. Ghosh, Construing the interactions between MnO2 nanoparticle and bovine serum albumin: insight into the structure and stability of a protein–nanoparticle complex. New J. Chem. 41(16), 8130–8139 (2017)

    Article  CAS  Google Scholar 

  22. N. Kumar, A. Sen, K. Rajendran, R. Rameshbabu, J. Ragupathi, H.A. Therese, T. Maiyalagan, Morphology and phase tuning of α-and β-MnO2 nanocacti evolved at varying modes of acid count for their well-coordinated energy storage and visible-light-driven photocatalytic behaviour. RSC Adv. 7(40), 25041–25053 (2017)

    Article  CAS  Google Scholar 

  23. K. Sato, M.P. Hendricks, L.C. Palmer, S.I. Stupp, Peptide supramolecular materials for therapeutics. Chem. Soc. Rev. 47(20), 7539–7551 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K. Grigoras, J. Keskinen, L. Grönberg, J. Ahopelto, M. Prunnila, Coated porous Si for high performance on-chip supercapacitors. J. Phys. 557, 12058 (2014)

    Google Scholar 

  25. X. Chen, Q. Bi, M. Sajjad, X. Wang, Y. Ren, X. Zhou, W. Xu, Z. Liu, One-dimensional porous silicon nanowires with large surface area for fast charge(−)discharge lithium-ion batteries. Nanomaterials (Basel) 8, 285 (2018)

    Article  CAS  Google Scholar 

  26. M. Sajjad, Y. Jiang, L. Guan, X. Chen, A. Iqbal, S. Zhang, Y. Ren, X. Zhou, Z. Liu, NiCo2S4 nanosheet grafted SiO2@C core-shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 31, 045403 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. M.-P. Liu, C.-H. Li, H.-B. Du, X.-Z. You, Facile preparation of silicon hollow spheres and their use in electrochemical capacitive energy storage. Chem. Commun. 48, 4950–4952 (2012)

    Article  CAS  Google Scholar 

  28. B. Akinwolemiwa, C. Wei, Q. Yang, L. Yu, L. Xia, D. Hu, C. Peng, G.Z. Chen, Optimal utilization of combined double layer and nernstian charging of activated carbon electrodes in aqueous halide supercapattery through capacitance unequalization. J. Electrochem. Soc. 165, A4067–A4076 (2018)

    Article  CAS  Google Scholar 

  29. Z.S. Iro, C. Subramani, T. Kesavan, S.S. Dash, M. Sasidharan, A.K. Sundramoorthy, MnO2 nanorods/SiO2 sphere coated on single-wall carbon nanotubes as supercapacitor electrode for high energy storage applications. Mater. Res. Express 4, 124004 (2017)

    Article  CAS  Google Scholar 

  30. H. Wang, R. Liu, C. Yang, Q. Hao, X. Wang, K. Gong, J. Wu, Y. Hu, Z. Li, J. Jiang, Smart and designable graphene–SiO2 nanocomposites with multifunctional applications in silicone elastomers and polyaniline supercapacitors. RSC Adv. 7, 11478–11490 (2017)

    Article  CAS  Google Scholar 

  31. L. Xu, Z. Chu, H. Wang, L. Cai, Z. Tu, H. Liu, C. Zhu, H. Shi, D. Pan, J. Pan, Electrostatically assembled multilayered films of biopolymer enhanced nanocapsules for on-demand drug release. ACS Appl. Bio Mater. 2, 3429–3438 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. L. Xu, H. Wang, Z. Chu, L. Cai, H. Shi, C. Zhu, D. Pan, J. Pan, X. Fei, Y. Lei, Temperature-responsive multilayer films of micelle-based composites for controlled release of a third-generation EGFR inhibitor. ACS Appl. Polym. Mater. 2, 741–750 (2020)

    Article  CAS  Google Scholar 

  33. J. Cherusseri, N. Choudhary, K. Sambath Kumar, Y. Jung, J. Thomas, Recent trends in transition metal dichalcogenide based supercapacitor electrodes. Nanoscale Horizons 4, 840–858 (2019)

    Article  CAS  Google Scholar 

  34. H. Zhuang, N. Yang, L. Zhang, R. Fuchs, X. Jiang, Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films. ACS Appl. Mater. Interfaces 7(20), 10886–10895 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. M. Kim, J. Kim, Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Appl. Mater. Interfaces 6, 9036–9045 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. L. Pei, Y. Tang, Y. Chen, C. Guo, X. Li, Y. Yuan, Y. Zhang, Preparation of silicon carbide nanotubes by hydrothermal method. J. Appl. Phys. 99, 114306 (2006)

    Article  CAS  Google Scholar 

  37. V. Raman, O. Bahl, U. Dhawan, Synthesis of silicon carbide through the sol–gel process from different precursors. J. Mater. Sci. 30, 2686–2693 (1995)

    Article  CAS  Google Scholar 

  38. J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater Sci. 57, 724–803 (2012)

    Article  CAS  Google Scholar 

  39. Y.-H. Joung, H.I. Kang, J.H. Kim, H.-S. Lee, J. Lee, W.S. Choi, SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system. Nanoscale Res. Lett. 7, 22 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Y. Yang, Z. Yu, T. Nosaka, K. Doudrick, K. Hristovski, P. Herckes, P. Westerhoff, Interaction of carbonaceous nanomaterials with wastewater biomass. Front. Environ. Sci. Eng. 9, 823–831 (2015)

    Article  CAS  Google Scholar 

  41. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, J. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114(27), 10834–10843 (1992)

    Article  CAS  Google Scholar 

  42. C.Y. Chen, H.X. Li, M.E. Davis, Studies on mesoporous materials: I. Synthesis and characterization of MCM-41. Microporous Mater. 2(1), 17–26 (1993)

    Article  Google Scholar 

  43. J.M. Jehng, W.C. Tung, C.H. Kuo, The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. J. Porous Mater. 15(1), 43–51 (2008)

    Article  CAS  Google Scholar 

  44. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350), 548–552 (1998)

    Article  CAS  PubMed  Google Scholar 

  45. R. Xu, W. Pang, J. Yu, Q. Huo, J. Chen, Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure (Wiley, New York, 2009).

    Google Scholar 

  46. X. Yang, Z. Li, J. Zhi, J. Ma, A. Hu, Synthesis of ultrathin mesoporous carbon through Bergman cyclization of enediyne self-assembled monolayers in SBA-15. Langmuir 26(13), 11244–11248 (2010)

    Article  CAS  PubMed  Google Scholar 

  47. J. Zhi, D. Song, Z. Li, X. Lei, A. Hu, Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: Efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media. Chem. Commun. 47(38), 10707–10709 (2011)

    Article  CAS  Google Scholar 

  48. J. Zhi, Y. Wang, S. Deng, A. Hu, Study on the relation between pore size and supercapacitance in mesoporous carbon electrodes with silica-supported carbon nanomembranes. RSC Adv. 4(76), 40296–40300 (2014)

    Article  CAS  Google Scholar 

  49. J. Zhi, S. Deng, Y. Wang, A. Hu, Highly ordered metal oxide nanorods inside mesoporous silica supported carbon nanomembranes: high performance electrode materials for symmetrical supercapacitor devices. J. Phys. Chem. C 119(16), 8530–8536 (2015)

    Article  CAS  Google Scholar 

  50. W. Wang, W. Shan, H. Ru, A facile and versatile partitioned cooperative self-assembly process to prepare SBA-15s with larger mesopores, high microporosity and tunable particle sizes. J. Mater. Chem. 21, 12059–12067 (2011)

    Article  CAS  Google Scholar 

  51. P.F. Fulvio, S. Pikus, M. Jaroniec, Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. J. Mater. Chem. 15(47), 5049–5053 (2005)

    Article  CAS  Google Scholar 

  52. S. Numao, K. Judai, J. Nishijo, K. Mizuuchi, N. Nishi, Synthesis and characterization of mesoporous carbon nano-dendrites with graphitic ultra-thin walls and their application to supercapacitor electrodes. Carbon 47(1), 306–312 (2009)

    Article  CAS  Google Scholar 

  53. Z. Hu, L. Zu, Y. Jiang, H. Lian, Y. Liu, X. Wang, X. Cui, High performance nanocomposite electrodes of mesoporous silica platelet-polyaniline synthesized via impregnation polymerization. Polym. Compos. 38(8), 1616–1623 (2017)

    Article  CAS  Google Scholar 

  54. R. Silva, T. Asefa, Noble metal-free oxidative electrocatalysts: polyaniline and Co(II)-polyaniline nanostructures hosted in nanoporous silica. Adv. Mater. 24(14), 1878–1883 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. A.K. Van Helden, J.W. Jansen, A. Vrij, Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J. Colloid Interface Sci. 81(2), 354–368 (1981)

    Article  Google Scholar 

  56. L. Zhang, M. D’Acunzi, M. Kappl, G.K. Auernhammer, D. Vollmer, C.M. van Kats, A. van Blaaderen, Hollow silica spheres: synthesis and mechanical properties. Langmuir 25(5), 2711–2717 (2009)

    Article  CAS  PubMed  Google Scholar 

  57. F. Caruso, R.A. Caruso, H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391), 1111–1114 (1998)

    Article  CAS  PubMed  Google Scholar 

  58. Z. Deng, M. Chen, S. Zhou, B. You, L. Wu, A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22(14), 6403–6407 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. S. Sacanna, L. Rossi, A.P. Philipse, Oil-in-water emulsification induced by ellipsoidal hematite colloids: evidence for hydrolysis-mediated self-assembly. Langmuir 23(20), 9974–9982 (2007)

    Article  CAS  PubMed  Google Scholar 

  60. C. Zoldesi, P. Steegstra, A.J. Imhof, Encapsulation of emulsion droplets by organo–silica shells. J. Colloid Interface Sci. 308, 121–129 (2007)

    Article  CAS  PubMed  Google Scholar 

  61. B. Peng, M. Chen, S. Zhou, L. Wu, X. Ma, Fabrication of hollow silica spheres using droplet templates derived from a miniemulsion technique. J. Colloid Interface Sci. 321(1), 67–73 (2008)

    Article  CAS  PubMed  Google Scholar 

  62. T. Zhang, J. Ge, Y. Hu, Q. Zhang, S. Aloni, Y.J. Yin, Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. J. Colloid Interface Sci. 120, 5890–5895 (2008)

    Google Scholar 

  63. C. Graf, D.L. Vossen, A. Imhof, A. van Blaaderen, A general method to coat colloidal particles with silica. Langmuir 19(17), 6693–6700 (2003)

    Article  CAS  Google Scholar 

  64. T. Adachi, S.U.M.I.O. Sakka, Dependence of the elastic moduli of porous silica gel prepared by the sol–gel method on heat-treatment. J. Mater. Sci. 25(11), 4732–4737 (1990)

    Article  CAS  Google Scholar 

  65. A. Fery, R. Weinkamer, Mechanical properties of micro-and nanocapsules: Single-capsule measurements. Polymer 48(25), 7221–7235 (2007)

    Article  CAS  Google Scholar 

  66. D. Luo, S.R. Pullela, M. Marquez, Z.J.B. Cheng, Cell encapsules with tunable transport and mechanical properties. 1, 034102 (2007)

    Google Scholar 

  67. F. Dubreuil, N. Elsner, A. Fery, Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur. Phys. J. 12(2), 215–221 (2003)

    CAS  Google Scholar 

  68. J. Yang, J. Lee, J. Kang, K. Lee, J.S. Suh, H.G. Yoon, S. Haam, Hollow silica nanocontainers as drug delivery vehicles. Langmuir 24(7), 3417–3421 (2008)

    Article  CAS  PubMed  Google Scholar 

  69. N.W. Clifford, K.S. Iyer, C.L. Raston, Encapsulation and controlled release of nutraceuticals using mesoporous silica capsules. J. Mater. Chem. 18(2), 162–165 (2008)

    Article  CAS  Google Scholar 

  70. J. Zhu, Y. Zhu, X. Wu, H. Song, Y. Zhang, X. Wang, Structure-thermal property correlation of aligned silicon dioxide nanorod arrays. Appl. Phys. Lett. 108(23), 231903 (2016)

    Article  CAS  Google Scholar 

  71. S. Ketabi, K. Lian, Effect of SiO2 on conductivity and structural properties of PEO–EMIHSO4 polymer electrolyte and enabled solid electrochemical capacitors. Electrochim. Acta 103, 174–178 (2013)

    Article  CAS  Google Scholar 

  72. S. Ketabi, K. Lian, The effects of SiO2 and TiO2 nanofillers on structural and electrochemical properties of poly (ethylene oxide)–EMIHSO4 electrolytes. Electrochim. Acta 154, 404–412 (2015)

    Article  CAS  Google Scholar 

  73. X. Yan, X. Wang, Y. Dai, Y. He, Z. Cai, Y. Wang, X. Wang, In situ self-assembly of SiO 2 coating Co 3 O 4/graphene aerogel and its enhanced electrochemical performance for supercapacitors. J. Mater. Sci. 30(18), 17218–17226 (2019)

    CAS  Google Scholar 

  74. M. Uemoto, Y. Kuwabara, S.A. Sato, K. Yabana, Nonlinear polarization evolution using time-dependent density functional theory. J. Chem. Phys. 150(9), 094101 (2019)

    Article  PubMed  CAS  Google Scholar 

  75. C. Tang, H.-F. Wang, J.-Q. Huang, W. Qian, F. Wei, S.-Z. Qiao, Q. Zhang, 3D hierarchical porous graphene-based energy materials: synthesis, functionalization, and application in energy storage and conversion. Electrochem. Energy Rev. 2, 332–371 (2019)

    Article  CAS  Google Scholar 

  76. J.M. Xu, X.C. Wang, J.P. Cheng, Supercapacitive performances of ternary CuCo2S4 sulfides. ACS Omega 5, 1305–1311 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. T.H. Wu, C.T. Chang, C.C. Wang, S. Parwaiz, C.C. Lai, Y.Z. Chen, S.Y. Lu, Y.L. Chueh, Few-layer graphene sheet-passivated porous silicon toward excellent electrochemical double-layer supercapacitor electrode. Nanoscale Res Lett 13, 242 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. J.H. Zheng, R.M. Zhang, K.K. Cheng, T. Liu, Z.Q. Xu, X.G. Wang, P.F. Yu, SiO2 nanospheres assembled on MoS2 nanosheets for improving electrochemical performance for supercapacitors. J. Mater. Sci. 30, 14405–14413 (2019)

    CAS  Google Scholar 

  79. D. Vega, J. Reina, R. Pavón, A. Rodríguez, High-density capacitor devices based on macroporous silicon and metal electroplating. IEEE Trans. Electron Devices 61, 116–122 (2013)

    Article  CAS  Google Scholar 

  80. W. Sun, R. Zheng, X. Chen, Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes. J. Power Sources 195, 7120–7125 (2010)

    Article  CAS  Google Scholar 

  81. D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Conédéra, H. Durou, Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J. Power Sources 195, 1266–1269 (2010)

    Article  CAS  Google Scholar 

  82. A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, R. Chandra, Silicon carbide nanocauliflowers for symmetric supercapacitor devices. Ind. Eng. Chem. Res. 55, 9452–9458 (2016)

    Article  CAS  Google Scholar 

  83. X. Chen, Q. Bi, M. Sajjad, X. Wang, Y. Ren, X. Zhou, W. Xu, Z. Liu, One-dimensional porous silicon nanowires with large surface area for fast charge–discharge lithium-ion batteries. Nanomaterials 8, 285 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  84. J.P. Alper, M.S. Kim, M. Vincent, B. Hsia, V. Radmilovic, C. Carraro, R. Maboudian, Silicon carbide nanowires as highly robust electrodes for micro-supercapacitors. J. Power Sources 230, 298–302 (2013)

    Article  CAS  Google Scholar 

  85. T.-H. Wu, C.-T. Chang, C.-C. Wang, S. Parwaiz, C.-C. Lai, Y.-Z. Chen, S.-Y. Lu, Y.-L. Chueh, Few-layer graphene sheet-passivated porous silicon toward excellent electrochemical double-layer supercapacitor electrode. Nanoscale Res. Lett. 13, 242 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. J.P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro, R. Maboudian, Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors. Nano Lett. 14, 1843–1847 (2014)

    Article  CAS  PubMed  Google Scholar 

  87. R. Kumar, A. Soam, R.O. Dusane, P. Bhargava, Sucrose derived carbon coated silicon nanowires for supercapacitor application. J. Mater. Sci. 29, 1947–1954 (2018)

    CAS  Google Scholar 

  88. M. McGraw, P. Kolla, B. Yao, R. Cook, Q. Quiao, J. Wu, A. Smirnova, One-step solid-state in-situ thermal polymerization of silicon-PEDOT nanocomposites for the application in lithium-ion battery anodes. Polymer 99, 488–495 (2016)

    Article  CAS  Google Scholar 

  89. J. Zhu, J. Yang, Z. Xu, J. Wang, Y. Nuli, X. Zhuang, X. Feng, Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale 9, 8871–8878 (2017)

    Article  CAS  PubMed  Google Scholar 

  90. M. Sajjad, Y. Jiang, L. Guan, X. Chen, A. Iqbal, S. Zhang, Y. Ren, X. Zhou, Z. Liu, NiCo2S4 nanosheet grafted SiO2@ C core-shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 31, 045403 (2019)

    Article  PubMed  CAS  Google Scholar 

  91. Y. Jin, Y. Tan, X. Hu, B. Zhu, Q. Zheng, Z. Zhang, G. Zhu, Q. Yu, Z. Jin, J. Zhu, Scalable production of the silicon-tin yin-yang hybrid structure with graphene coating for high performance lithium-ion battery anodes. ACS Appl. Mater. Interfaces. 9, 15388–15393 (2017)

    Article  CAS  PubMed  Google Scholar 

  92. X. Zuo, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 31, 113–143 (2017)

    Article  CAS  Google Scholar 

  93. S. Ortaboy, J.P. Alper, F. Rossi, G. Bertoni, G. Salviati, C. Carraro, R. Maboudian, MnO x-decorated carbonized porous silicon nanowire electrodes for high performance supercapacitors. Energy Environ. Sci. 10, 1505–1516 (2017)

    Article  CAS  Google Scholar 

  94. Y. Zhang, Y. Zhao, S. Cao, Z. Yin, L. Cheng, L. Wu, Design and synthesis of hierarchical SiO2@C/TiO2 hollow spheres for high-performance supercapacitors. ACS Appl. Mater. Interfaces 9, 29982–29991 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. D. Tang, R. Yi, W. Zhang, Z. Qiao, Y. Liu, Q. Huo, D. Wang, Bottom-up synthesis of mesoporous carbon/silicon carbide composite at low temperature for supercapacitor electrodes. Mater. Lett. 198, 140–143 (2017)

    Article  CAS  Google Scholar 

  96. G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, M.M. Yusoff, K.F. Chong, Co3O4/SiO2 nanocomposites for supercapacitor application. J. Solid State Electrochem. 18, 2505–2512 (2014)

    Article  CAS  Google Scholar 

  97. Y. Zhang, H. Chen, S. Wang, W. Shao, W. Qin, X. Zhao, F. Kong, Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications. Ind. Crops Prod. 151, 1–9 (2020)

    Article  CAS  Google Scholar 

  98. M. Sarno, S. Galvagno, R. Piscitelli, S. Portofino, P. Ciambelli, Supercapacitor electrodes made of exhausted activated carbon-derived SiC nanoparticles coated by graphene. Ind. Eng. Chem. Res. 55, 6025–6035 (2016)

    Article  CAS  Google Scholar 

  99. E.U. Yilmaz, M. Yilmaz, Diatom-derived SiO2/N-doped C nanocomposite for electrochemical capacitors. ECS J. Solid State Sci. Technol. 9, 061012 (2020)

    Article  CAS  Google Scholar 

  100. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, Y. Huang, Ultrafine core-shell BaTiO3@ SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018)

    Article  CAS  Google Scholar 

  101. P.F. Ortega, J.P.C. Trigueiro, G.G. Silva, R.L. Lavall, Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2, PVDF and imidazolium ionic liquid. Electrochim. Acta 188, 809–817 (2016)

    Article  CAS  Google Scholar 

  102. Y. Zhang, H. Chen, S. Wang, W. Shao, W. Qin, X. Zhao, F. Kong, Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications. Ind. Crops Prod. 151, 112490 (2020)

    Article  CAS  Google Scholar 

  103. A. Maity, S. Samanta, S. Roy, D. Biswas, D. Chakravorty, Giant dielectric constant of copper nanowires/amorphous SiO2 composite thin films for supercapacitor application. ACS Omega 5, 12451 (2020)

    Article  CAS  Google Scholar 

  104. D. Aradilla, P. Gentile, G. Bidan, V. Ruiz, P. Gómez-Romero, T.J. Schubert, H. Sahin, E. Frackowiak, S.J.N.E. Sadki, High performance of symmetric micro-supercapacitors based on silicon nanowires using N-methyl-N-propylpyrrolidinium bis (trifluoromethylsulfonyl) imide as electrolyte. Nano Energy 9, 273–281 (2014)

    Article  CAS  Google Scholar 

  105. H.S. Huang, K.H. Chang, N. Suzuki, Y. Yamauchi, C.C. Hu, K.C.W. Wu, Evaporation-induced coating of hydrous ruthenium oxide on mesoporous silica nanoparticles to develop high-performance supercapacitors. Small 9(15), 2520–2526 (2013)

    Article  CAS  PubMed  Google Scholar 

  106. Y. Bencheikh, M. Harnois, R. Jijie, A. Addad, P. Roussel, S. Szunerits, T. Hadjersi, S.E.H. Abaidia, R.J.E.A. Boukherroub, High performance silicon nanowires/ruthenium nanoparticles micro-supercapacitors. Electrochim. Acta 311, 150–159 (2019)

    Article  CAS  Google Scholar 

  107. D.P. Dubal, D. Aradilla, G. Bidan, P. Gentile, T.J. Schubert, J. Wimberg, S. Sadki, 3D hierarchical assembly of ultrathin MnO 2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li-doped ionic liquid. Sci. Rep. 5, 1–10 (2015)

    Article  CAS  Google Scholar 

  108. B. Tao, J. Zhang, F. Miao, S. Hui, L. Wan, Preparation and electrochemistry of NiO/SiNW nanocomposite electrodes for electrochemical capacitors. Electrochim. Acta 55(18), 5258–5262 (2010)

    Article  CAS  Google Scholar 

  109. F. Lu, M. Qiu, X. Qi, L. Yang, J. Yin, G. Hao, J. Zhong, Electrochemical properties of high-power supercapacitors using ordered NiO coated Si nanowire array electrodes. Appl. Phys. A 104(2), 545–550 (2011)

    Article  CAS  Google Scholar 

  110. D. Aradilla, G. Bidan, P. Gentile, P. Weathers, F. Thissandier, V. Ruiz, P. Gómez-Romero, T.J. Schubert, H. Sahin, S.J. Sadki, Novel hybrid micro-supercapacitor based on conducting polymer coated silicon nanowires for electrochemical energy storage. Rsc Adv. 4(50), 26462–26467 (2014)

    Article  CAS  Google Scholar 

  111. J.H. Sung, S.J. Kim, S.H. Jeong, E.H. Kim, K.H. Lee, Flexible micro-supercapacitors. J. Power Sour. 162(2), 1467–1470 (2006)

    Article  CAS  Google Scholar 

  112. J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010)

    Article  CAS  PubMed  Google Scholar 

  113. W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei, Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6(8), 496–500 (2011)

    Article  CAS  PubMed  Google Scholar 

  114. C. Adriaanse, Microsupercapacitors Plugging Electronics into T-Shirts (Soc Chemical Industry, London, 2011).

    Google Scholar 

  115. Y. Shao, J.-H. Fu, Z. Cao, K. Song, R. Sun, Y. Wan, A. Shamim, L. Cavallo, Y. Han, R.B. Kaner, 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-ion asymmetric micro-supercapacitors. ACS Nano 14(6), 7308–7318 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. L.J. Liu, C.F. Liu, X. Li, S. Wang, F.M. Wu, G.Y. Zhang, Graphene-based planar on-chip micro-supercapacitors with whole series/parallel configuration for integration. Integrated Ferroelectr. 199(1), 95–104 (2019)

    Article  CAS  Google Scholar 

  117. X. Yun, B. Lu, Z. Xiong, B. Jia, B. Tang, H. Mao, T. Zhang, Wang XJRa: Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv. 9, 29384–29395 (2019)

    Article  CAS  Google Scholar 

  118. H. Zhang, S. Ma, Q. Zhang, M. Cao, Y. Wang, Y. Gu, X. Xu, Thermoreversible and self-protective sol–gel transition electrolytes for all-printed transferable microsupercapacitors as safer micro-energy storage devices. ACS Appl. Mater. Interfaces 12(37), 41819–41831 (2020)

    Article  CAS  PubMed  Google Scholar 

  119. D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourg, A.M. Lubers, Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 38, 226–252 (2009)

    Article  CAS  PubMed  Google Scholar 

  120. Beidaghi M, Wang C: Recent advances in design and fabrication of on-chip micro-supercapacitors. In Energy Harvesting and Storage: Materials, Devices, and Applications III. International Society for Optics and Photonics; 2012: 837708.

  121. M. Beidaghi, C. Wang, Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 22(21), 4501–4510 (2012)

    Article  CAS  Google Scholar 

  122. Y.D. Chiang, H.Y. Lian, S.Y. Leo, S.G. Wang, Y. Yamauchi, K.C.W. Wu, Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. J. Phys. Chem. C 115(27), 13158–13165 (2011)

    Article  CAS  Google Scholar 

  123. F. Thissandier, P. Gentile, N. Pauc, E. Hadji, A. Le Comte, O. Crosnier, G. Bidan, S. Sadki, T.J. Brousse, Highly N-doped silicon nanowires as a possible alternative to carbon for on-chip electrochemical capacitors. Electrochemistry 81, 777–782 (2013)

    Article  CAS  Google Scholar 

  124. F. Thissandier, A. Le Comte, O. Crosnier, P. Gentile, G. Bidan, E. Hadji, T. Brousse, S.J.E.C. Sadki, Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications. Electrochem. Commun. 25, 109–111 (2012)

    Article  CAS  Google Scholar 

  125. F. Thissandier, N. Pauc, T. Brousse, P. Gentile, S. Sadki, Micro-ultracapacitors with highly doped silicon nanowires electrodes. Nanoscale Res. Lett. 8(1), 1–5 (2013)

    Article  CAS  Google Scholar 

  126. J.W. Choi, J. McDonough, S. Jeong, J.S. Yoo, C.K. Chan, Y. Cui, Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10(4), 1409–1413 (2010)

    Article  CAS  PubMed  Google Scholar 

  127. F. Thissandier, L. Dupré, P. Gentile, T. Brousse, G. Bidan, D. Buttard, S. Sadki, Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 117, 159–163 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Sajjad.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, M. Recent Advances in SiO2 Based Composite Electrodes for Supercapacitor Applications. J Inorg Organomet Polym 31, 3221–3239 (2021). https://doi.org/10.1007/s10904-021-01899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01899-1

Keywords

Navigation