Skip to main content
Log in

Characterization of the CoFe2O4/Cu displacement effect in the Y123 superconductor matrix on critical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, CoFe2O4 (x = 0, 5, 10 and 20 wt%) doped YBa2Cu3−x(CoFe2O4)xO7−δ bulk samples were produced using solid state reaction (SSR) method and sol–gel(SG) methods. Oxide-form and acetate-form powders were preferred for SSR method and SG method, respectively. The heat treatment of the produced samples was carried out in two stages. Firstly, the samples were annealed at 950 °C for 24 h, after which they were kept in oxygen at 500 °C for 5 h and allowed to be cooled down to room temperature. Characterization of all samples was performed using methods such as X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, temperature-dependent resistance measurement (RT) and Vickers microhardness analysis. Superconducting behavior was observed in all the produced samples, but as a result of the addition, a decrease was observed with the increase of the doping ratio at the critical transition temperature. As a result of the characterization, it is concluded that the doping ions can be replaced with Cu atoms in Y123 structure. In addition, doping led to significant changes in Vickers microhardness results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Strauven, J.P. Locquet, O.B. Verbeke, Y. Bruynseraede, Oxygen evolution from YBa2Cu3O6.85 high Tc superconductors. Solid State Commun. 65, 293–6 (1988)

    Article  CAS  Google Scholar 

  2. E.D. Specht, C.J. Sparks, A.G. Dhere, J. Brynestad, O.B. Cavin, D.M. Kroeger et al., Effect of oxygen pressure on the orthorhombic-tetragonal transition in the high-temperature superconductor YBa2Cu3Ox. Phys Rev B. 37, 7426–7434 (1988). https://doi.org/10.1103/PhysRevB.37.7426

    Article  CAS  Google Scholar 

  3. J.D. Jorgensen, B.W. Veal, A.P. Paulikas, L.J. Nowicki, G.W. Crabtree, H. Claus et al., Structural properties of oxygen-deficient YBa2Cu3O7−δ. Phys. Rev. B 41, 1863–1877 (1990). https://doi.org/10.1103/PhysRevB.41.1863

    Article  CAS  Google Scholar 

  4. A. Harabor, P. Rotaru, N.A. Harabor, P. Nozar, A. Rotaru, Orthorhombic YBCO-123 ceramic oxide superconductor: structural, resistive and thermal properties. Ceram. Int. 45(2), 2899–2907 (2019)

    Article  CAS  Google Scholar 

  5. A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, A new Y-based HTSC with Tc above 100 K. Physica C 469, 2012–2014 (2009). https://doi.org/10.1016/j.physc.2009.09.003

    Article  CAS  Google Scholar 

  6. A. Li, X.N. Ying, Y.B. Qi, X.S. Xu, Z.H. Bao, Q.M. Zhang et al., Effect of zinc doping on the microstructure in YBCO. Physica C 341–348, 669–670 (2000). https://doi.org/10.1016/S0921-4534(00)00642-0

    Article  Google Scholar 

  7. A. Rao, S. Radheshyam, R. Kumar, S. Gupta, C. Meingast, B. Gahtori et al., The influence of Mn doping on the thermal expansion of the high T C superconductor YBa2 (Cu1–x Mn x )3Oy. J. Phys. Condens. Matter 19, 056208 (2007). https://doi.org/10.1088/0953-8984/19/5/056208

    Article  CAS  Google Scholar 

  8. S.E. Jasim, M.A. Jusoh, M. Hafiz, R. Jose, Fabrication of superconducting YBCO nanoparticles by electrospinning. Procedia Eng. 148, 243–248 (2016). https://doi.org/10.1016/j.proeng.2016.06.595

    Article  CAS  Google Scholar 

  9. Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, A.F. Ben, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

    Article  CAS  Google Scholar 

  10. A. Rao, Influence of Zn doping on the thermal expansion of the high T c superconductor Y1Ba2Cu3Oy. J. Phys. Condens Matter. 16, 1439–1445 (2004). https://doi.org/10.1088/0953-8984/16/8/024

    Article  CAS  Google Scholar 

  11. N.P. Liyanawaduge, A. Kumar, R. Jha, B.S.B. Karunarathne, V.P.S. Awana, High field magneto-transport and magnetization study of Y1−xCaxBa2Cu3 (x=0.00–0.25). J. Alloys Compd. 543, 135–41 (2012)

    Article  CAS  Google Scholar 

  12. B.A. Malik, K. Asokan, V. Ganesan, D. Singh, M.A. Malik, The magnetoresistance of YBCO/BZO composite superconductors. Physica C 531, 85–92 (2016). https://doi.org/10.1016/j.physc.2016.11.004

    Article  CAS  Google Scholar 

  13. B.A. Malik, M.A. Malik, K. Asokan, Magneto transport study of YBCO: Ag composites. Curr. Appl. Phys. 16, 1270–1276 (2016). https://doi.org/10.1016/j.cap.2016.07.004

    Article  Google Scholar 

  14. L.M. Yeoh, M. Ahmad, Characterization and synthesis of Y0.9Ca0.1Ba1.8Sr0.2Cu3O7−δ via combining sol–gel and solid-state route. J. Non Cryst. Solids 354, 4012–4018 (2008)

  15. M. Yilmaz, O. Dogan, Structural and superconducting properties in Y0.6Gd0.4Ba2(Nb)Cu3O7-y cuprates doped with niobium. J Rare Earths. 30, 241–4 (2012)

    Article  CAS  Google Scholar 

  16. N.I. Matskevich, T. Wolf, Thermochemical investigation of YBa2Cu3O7−δ superconductor doped by lutetium. J. Alloys Compd. 614, 415–419 (2014). https://doi.org/10.1016/j.jallcom.2014.06.125

    Article  CAS  Google Scholar 

  17. A. Baranauskas, D. Jasaitis, A. Kareiva, R. Haberkorn, H. Beck, Sol–gel preparation and characterization of manganese-substituted superconducting YBa2(Cu1−xMnx)4O8 compounds. J. Eur. Ceram. Soc. 21, 399–408 (2001). https://doi.org/10.1016/S0955-2219(00)00206-5

    Article  CAS  Google Scholar 

  18. T. Klemkiene, R. Raudonis, A. Beganskiene, A. Zalga, I. Grigoraviciute, A. Kareiva, Scandium and gallium substitution effects in the (Y1−xScx)Ba2Cu4O8 and (Y1−xGax)Ba2Cu4O8 superconducting oxides. Mater. Chem. Phys. 119, 208–213 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.059

    Article  CAS  Google Scholar 

  19. Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, A. Varilci, W. Dachraoui et al., Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358. Phys. B 450, 7–15 (2014). https://doi.org/10.1016/j.physb.2014.06.003

    Article  CAS  Google Scholar 

  20. Y. Slimani, E. Hannachi, M.B. Salem, A. Hamrita, M.B. Salem, F.B. Azzouz, Excess conductivity study in Nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28(10), 3001–10 (2015)

    Article  CAS  Google Scholar 

  21. Slimani Y, Hannachi E, AF Ben, SM Ben. Comparative Study of the Effect of Magnetic Nanoparticle CoFe2O4 on Fluctuation-Induced Conductivity of Y-123 and Y-358 Superconductors. J Supercond Nov Magn 2019;32:511–519

  22. S. Bibekananda, L.R. Krutika, P. Bandana, D. Samal, B. Dhrubananda, Excess conductivity and magnetization of CoFe2O4 combined with Y1Ba2Cu3O7-δ as a superconductor. J. Phys. Chem. Solids 132, 187 (2019). https://doi.org/10.1016/j.jpcs.2019.04.035

    Article  CAS  Google Scholar 

  23. U. Schwingenschlögl, C. Schuster, Quantitative calculations of charge-carrier densities in the depletion layers at YBa2Cu3O7−δ interfaces. Phys. Rev. B 79, 092505 (2009). https://doi.org/10.1103/PhysRevB.79.092505

    Article  CAS  Google Scholar 

  24. Y. Zalaoglu, F. Karaboga, C. Terzioglu, G. Yildirim, Improvement of mechanical performances and characteristics of bulk Bi-2212 materials exposed to Au diffusion and stabilization of durable tetragonal phase by Au. Ceram Int. 43, 6836–6844 (2017). https://doi.org/10.1016/j.ceramint.2017.02.104

    Article  CAS  Google Scholar 

  25. P.B. Allen, W.E. Pickett, H. Krakauer, Anisotropic normal-state transport properties predicted and analyzed for high- Tc oxide superconductors. Phys. Rev. B. 37, 7482–7490 (1988). https://doi.org/10.1103/PhysRevB.37.7482

    Article  CAS  Google Scholar 

  26. N.K. Saritekin, M. Pakdil, G. Yildirim, M. Oz, T. Turgay, Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism. J. Mater. Sci. Mater. Electron. 27, 956–965 (2016). https://doi.org/10.1007/s10854-015-3839-9

    Article  CAS  Google Scholar 

  27. S. Martin, M. Gurvitch, C.E. Rice, A.F. Hebard, P.L. Gammel, R.M. Fleming et al., Nonlinear temperature dependence of the normal-state resistivity in YBa2Cu4O8±δ films. Phys. Rev. B 39, 9611–9613 (1989). https://doi.org/10.1103/PhysRevB.39.9611

    Article  CAS  Google Scholar 

  28. R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, Charge carrier localization and metal to insulator transition in cerium substituted (Bi, Pb)-2212 superconductor. J. Alloys Compd. 493, 11–16 (2010). https://doi.org/10.1016/j.jallcom.2009.12.047

    Article  CAS  Google Scholar 

  29. D.M. Newns, P.C. Pattnaik, C.C. Tsuei, Role of Van Hove singularity in high-temperature superconductors: mean field. Phys. Rev. B. 43, 3075–3084 (1991). https://doi.org/10.1103/PhysRevB.43.3075

    Article  CAS  Google Scholar 

  30. Y. Zalaoglu, G. Yildirim, C. Terzioglu, Magnetoresistivity study on Cr added Bi-2212 superconductor ceramics with experimental and theoretical approaches. J. Mater. Sci. Mater. Electron. 24, 239–247 (2013). https://doi.org/10.1007/s10854-012-0723-8

    Article  CAS  Google Scholar 

  31. Miao H, Meinesz M, Czabaj B, Parrell J, Hong S, Balachandran U (Balu), et al. Microstructure and Jc improvements in multifilamentary Bi-2212/Ag wires for high field magnet applications. AIP Conf. Proc., vol. 986, AIP; 2008, p. 423–30. https://doi.org/10.1063/1.2900377.

  32. H.H. Xu, L. Cheng, S.B. Yan, D.J. Yu, L.S. Guo, X. Yao, Recycling failed bulk YBCO superconductors using the NdBCO/YBCO/MgO film-seeded top-seeded melt growth method. J. Appl. Phys. 111, 103910 (2012). https://doi.org/10.1063/1.4720400

    Article  CAS  Google Scholar 

  33. Awad R, Abou-Aly AI, Abdel Gawad MMH, G-Eldeen I, The influence of SnO2 nano-particles addition on the Vickers microhardness of (Bi, Pb)-2223 superconducting phase. J. Supercond. Nov. Magn. 25, 739–745 (2012)

  34. Y. Yoshino, A. Iwabuchi, K. Noto, N. Sakai, M. Murakami, Vickers hardness properties of YBCO bulk superconductor at cryogenic temperatures. Physica C 357–360, 796–798 (2001). https://doi.org/10.1016/S0921-4534(01)00367-7

    Article  Google Scholar 

  35. U. Kölemen, S. Çelebi, Y. Yoshino, A. Öztürk, Mechanical properties of YBCO and YBCO+ZnO polycrystalline superconductors using Vickers hardness test at cryogenic temperatures. Physica C 406, 20–26 (2004). https://doi.org/10.1016/j.physc.2004.02.174

    Article  CAS  Google Scholar 

  36. Srour A, Malaeb W, Rekaby Mand Awad R, Mechanical properties of the (BaSnO3)x/Cu0.5Tl0.5Ba2Ca2Cu3O10−δ superconductor phase. Phys. Scr. 92, 104002 (2017)

  37. K. Habanjar, A. Najem, A.M. Abdel-Gaber, R. Awad, Effect of pelletization pressure on the physical and mechanical properties of (Bi, Pb)-2223 superconductors. Phys. Scr. (2020). https://doi.org/10.1088/1402-4896/ab7f46

    Article  Google Scholar 

  38. Asikuzun E, Ozturk O, Cetinkara HA, Yildirim G, Varilci A, Y\ilmazlar M, et al. Vickers hardness measurements and some physical properties of Pr2O3 doped Bi-2212 superconductors. J Mater Sci Mater Electron. 2012;23:1001–10. doi:https://doi.org/10.1007/s10854-011-0537-0.

  39. R. Awad, A.I. Abou Aly, M. Kamal, M. Anas, Mechanical properties of (Cu0.5TI0.5)-1223 substituted by Pr. J Supercond Nov Magn. 24, 1947–56 (2011)

    Article  CAS  Google Scholar 

  40. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  CAS  Google Scholar 

  41. M. Dogruer, O. Gorur, F. Karaboga, G. Yildirim, C. Terzioglu, Zr diffusion coefficient and activation energy calculations based on EDXRF measurement and evaluation of mechanical characteristics of YBa2Cu3O7−x bulk superconducting ceramics diffused with Zr nanoparticles. Powder Technol. 246, 553–560 (2013). https://doi.org/10.1016/j.powtec.2013.06.018

    Article  CAS  Google Scholar 

  42. M. Dogruer, C. Terzioglu, G. Yildirim, O. Gorur, Significant change in mechanical properties of YBa2Cu3O7−xBulk superconductors diffused with Sn nanoparticles. J. Supercond. Nov. Magn. 27, 755–761 (2014). https://doi.org/10.1007/s10948-013-2379-x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Safran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safran, S., Bulut, F., Nefrow, A.R.A. et al. Characterization of the CoFe2O4/Cu displacement effect in the Y123 superconductor matrix on critical properties. J Mater Sci: Mater Electron 31, 20578–20588 (2020). https://doi.org/10.1007/s10854-020-04578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04578-y

Navigation