Skip to main content
Log in

Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This exhaustive study experimentally deals with the role of Zr foreign impurities on the electrical, superconducting and flux pinning properties of the bulk Bi-2223 superconducting compounds by the typical experimental characterization methods such as dc resistivity (ρ–T), transport critical current density (J c ) and powder X-ray diffraction (XRD) surveys. All the experimental findings show that the curial characteristics, being in charge of the varied attractive and feasible applications, retrograde significantly with the enhancement of the Zr nanoparticles in the Bi-2223 superconducting system due to the presence of two trap levels for mobile holes. This leads to the degradation of the metastability of the superconducting materials. In more detail, based on the dc resistivity and transport critical current density measurements, the Zr additives give rise to the localization problem as a consequence of the change in the dynamics of electron–electron interaction. Thus, the room state conductivity, \(T_{c}^{onset}\), \(T_{c}^{offset}\) and J c values retrograde significantly. Similarly, the Zr foreign impurities embedded in the Bi-2223 crystal lattice make the artificial random defects, dislocations and grain boundary weak-interactions in the consecutively stacked layers enhance immediately, and the superconducting Cu–O2 layers distort especially. Moreover, the XRD investigations including the evidences about the decrement/increment in the c-axis/a-axis length verify the regression of the superconducting properties with the Zr dopant. The main differentiation of the lattice constant parameters stems from aliovalent substitutions (replacement of the divalent Cu by the tetravalent Zr impurties) along with the crystal structure. In other words, the reduction of the electronegativity leads to decrease the mobile hole concentration in the Cu–O2 consecutively stacked layers. Furthermore, all the decrement parameters are theoretically favored by hybridization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.Y. Oh, H.R. Kim, Y.H. Jeong, O.B. Hyun, C.J. Kim, Phys. C 463–465, 464–467 (2007)

    Article  Google Scholar 

  2. M. Dogruer, O. Gorur, F. Karaboga, G. Yildirim, C. Terzioglu, Powder Technol. 246, 553–560 (2013)

    Article  Google Scholar 

  3. J.D. Hodge, H. Muller, D.S. Applegate, Q. Huang, Appl. Supercond. 3, 469–482 (1995)

    Article  Google Scholar 

  4. S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 847–856 (2012)

    Article  Google Scholar 

  5. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 25, 381–390 (2012)

    Article  Google Scholar 

  6. M. Chen, W. Paul, M. Lakner, L. Donzel, M. Hoidis, P. Unternaehrer, R. Weder, M. Mendik, Phys. C 372, 1657–1663 (2002)

    Article  Google Scholar 

  7. V.L. Ginzburg, E.A. Andryushin, Superconductivity, Revised ed. World Scientific Pub. Co. Inc. (2004)

  8. P.A. Lee, N. Read, Phys. Rev. Lett. 58, 2691–2694 (1987)

    Article  Google Scholar 

  9. K. Levin, J.H. Kim, J.P. Lu, Q. Si, Phys. C 175, 449–522 (1991)

    Article  Google Scholar 

  10. G. Yildirim, M. Dogruer, F. Karaboga, C. Terzioglu, J. Alloy. Compd. 584, 344–351 (2014)

    Article  Google Scholar 

  11. O. Gorur, C. Terzioglu, A. Varilci, M. Altunbas, Supercond. Sci. Technol. 18, 1233–1237 (2005)

    Article  Google Scholar 

  12. M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, J. Mater. Sci. Mater. Electron. 24, 896–905 (2013)

    Article  Google Scholar 

  13. Y. Zalaoglu, G. Yildirim, C. Terzioglu, O. Gorur, J. Alloy. Compd. 622, 489–499 (2015)

    Article  Google Scholar 

  14. W. Buckel, R. Kleiner, Superconductivity: Fundamentals and Applications, 2nd edn. (Wiley-VCH Verlag, Weinheim, 2004)

    Book  Google Scholar 

  15. N.K. Saritetekin, M. Dogruer, G. Yildirim, C. Terzioglu, J. Mater. Sci. Mater. Electron. 25, 3127–3136 (2014)

    Article  Google Scholar 

  16. F.N. Werfel, U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, P. Schirrmeister, Supercond. Sci. Technol. 25, 014007 (2012)

    Article  Google Scholar 

  17. M. Dogruer, C. Terzioglu, G. Yildirim, M. Pakdil, Y. Zalaoglu, J. Mater. Sci. Mater. Electron. 26, 6013–6019 (2015)

    Article  Google Scholar 

  18. N.K. Saritekin, Y. Zalaoglu, M. Dogruer, G. Yildirim, C. Terzioglu, O. Gorur, J. Alloy. Compd. 610, 361–371 (2014)

    Article  Google Scholar 

  19. K.Y. Choi, I.S. Jo, S.C. Han, Y.H. Han, T.H. Sung, M.H. Jung, G.S. Park, S.I. Lee, Curr. Appl. Phys. 11, 1020–1023 (2011)

    Article  Google Scholar 

  20. H. Miao, M. Meinesz, B. Czabai, J. Parrell, S. Hong, in Aip Conference Proceedings, vol 986 (2008), pp. 423–430

  21. K. Koyama, S. Kanno, S. Noguchi, Jpn. J. Appl. Phys. 29, L53–L56 (1990)

    Article  Google Scholar 

  22. H. Hilgenkamp, J. Mannhart, J. Rev. Mod. Phys. 74, 485–549 (2002)

    Article  Google Scholar 

  23. Y. Zalaoglu, G. Yildirim, H. Buyukuslu, N.K. Saritekin, A. Varilci, C. Terzioglu, O. Gorur, J. Alloy. Compd. 631, 111–119 (2015)

    Article  Google Scholar 

  24. O. Ozturk, E. Asikuzun, G. Yildirim, J. Mater. Sci. Mater. Electron. 24, 1274–1281 (2013)

    Article  Google Scholar 

  25. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, M.M.H. Abdel Gawad, I. G-Eldeen, J. Supercond. Nov. Magn. 25, 739–745 (2012)

    Article  Google Scholar 

  26. S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloy. Compd. 540, 260–266 (2012)

    Article  Google Scholar 

  27. K. Kocabas, O. Ozkan, O. Bilgili, Y. Kadıoglu, H. Yılmaz, J. Supercond. Nov. Magn. 23, 1485–1492 (2010)

    Article  Google Scholar 

  28. D. Mangapathi, T. Rao, V. Somaiah, Y.C. Haribabu, Venudhar. Cryst. Res. Technol. 28, 285–298 (1993)

    Article  Google Scholar 

  29. A. Ianculescu, M. Gartner, B. Despax, V. Bley, R. Th Lebey, M.Modreanu Gavrila, Appl. Surf. Sci. 253, 344–348 (2006)

    Article  Google Scholar 

  30. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575–1588 (2010)

    Article  Google Scholar 

  31. X.L. Lin, S.S. Ma, H.Y. Wang, H. Xu, Acta Phys. Sin. 56, 2852–2857 (2007)

    Google Scholar 

  32. H. Eskes, G.A. Sawatzky, Phys. Rev. Lett. 61, 1415–1418 (1988)

    Article  Google Scholar 

  33. B.F. Azzouz, A. M’chirgui, B. Yangui, C. Boulesteix, B.M. Salem, Phys. C 356, 83–96 (2001)

    Article  Google Scholar 

  34. M.R. Persland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Floer, Phys. C 176, 95–105 (1991)

    Article  Google Scholar 

  35. S.A. Yashnik, Z.R. Ismagilov, A.V. Porsin, S.P. Denisov, N.M. Danchenko, Top. Catal. 465, 42–43 (2007)

    Google Scholar 

  36. S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001–045005 (2008)

    Article  Google Scholar 

  37. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, Supercond. Sci. Technol. 22, 045016–045022 (2009)

    Article  Google Scholar 

  38. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, P. Guruswamy, U. Syamaprasad, J. Appl. Phys. 104, 013919 (2008)

    Article  Google Scholar 

  39. R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloy. Compd. 493, 11–16 (2010)

    Article  Google Scholar 

  40. S. Bazargan, H. Javanmard, M. Akhavan, Phys. C 466, 157–162 (2007)

    Article  Google Scholar 

  41. G.I. Harus, A.I. Ponomarev, T.B. Charikova, A.N. Ignatenkov, L.D. Sabirzjanova, N.G. Shelushinina, V.F. Elesin, A.A. Ivanov, I.A. Rudnev, Phys. C 383, 207–213 (2002)

    Article  Google Scholar 

  42. P. Starowicz, J. Sokowski, M. Balanda, A. Szytua, Phys. C 363, 80–90 (2001)

    Article  Google Scholar 

  43. C. Nguyen-Van-Huong, C. Hinnen, J.M. Siffre, J. Mater. Sci. 32, 1725–1731 (1997)

    Article  Google Scholar 

  44. Y. Zalaoglu, G. Yildirim, C. Terzioglu, O. Gorur, J. Alloy. Compd. 622, 489–499 (2010)

    Article  Google Scholar 

  45. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, J. Alloy. Compd. 472, 13–17 (2009)

    Article  Google Scholar 

  46. A. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy. Compd. 454, 46–51 (2008)

    Article  Google Scholar 

  47. R.J. Sanderson, K.C. Hewitt, Phys. C 425, 52–61 (2005)

    Article  Google Scholar 

  48. A. Yildiz, K. Kocabas, G.B. Akyuz, J. Supercond. Nov. Magn. 25, 1459–1467 (2012)

    Article  Google Scholar 

  49. O. Gorur, Y. Ozturk, G. Yildirim, M. Dogruer, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 3063–3072 (2013)

    Article  Google Scholar 

  50. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113–123 (1959)

    Article  Google Scholar 

  51. G. Yildirim, A. Varilci, M. Akdogan, C. Terzioglu, J. Mater. Sci. Mater. Electron. 23, 928–935 (2012)

    Article  Google Scholar 

  52. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  53. J.B. Ketterson, S.N. Song, Superconductivity, 1st edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  54. J. Horvat, S. Soltanian, X.L. Wang, S.X. Dou, Appl. Phys. Lett. 84, 3109–3111 (2004)

    Article  Google Scholar 

  55. M. Dogruer, Y. Zalaoglu, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci. Mater. Electron. 24, 2019–2026 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This study is totally supported by Abant Izzet Baysal University Scientific Research Project Coordination Unit (Project No: 2015.09.05.824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Saritekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saritekin, N.K., Pakdil, M., Yildirim, G. et al. Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism. J Mater Sci: Mater Electron 27, 956–965 (2016). https://doi.org/10.1007/s10854-015-3839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3839-9

Keywords

Navigation