Skip to main content
Log in

Mechanical Properties of (Cu0.5Tl0.5)-1223 Substituted by Pr

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cu0.5Tl0.5Ba2Ca2−x Pr x Cu3O10−δ superconducting samples, with 0≤x≤0.15, were prepared by a single-step solid state reaction on a form of rectangular bar. The prepared samples were characterized using X-ray powder diffraction (XRD) and scanning electron microscope (SEM). The room temperature Vickers microhardness was measured at different loads (0.25–3 N). The experimental results were analyzed using Meyer’s law, Hays–Kendall approach, elastic/plastic deformation model, proportional specimen resistance model, and the indentation-induced cracking (IIC) model. Surprising results were obtained and showed that all samples in the form of rectangular bars exhibited reverse indentation size effect in contrary with those in the form of discs. Vickers microhardness values were decreased as Pr-content increased that consisting with the porosity results. Furthermore, the Young’s modulus was determined using the dynamic resonance technique. A relation between Young’s modulus (E) and Vickers microhardness (H V) was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uzun, O., Karaaslan, T., Gogebakan, M., Keskin, M.: J. Alloys Compd. 376, 149 (2004)

    Article  Google Scholar 

  2. Kolemen, U., Uzun, O., Aksan, M.A., Guclu, N., Yakinci, E.: J. Alloys Compd. 415, 294 (2006)

    Article  Google Scholar 

  3. Kolemen, U., Uzun, O., Yilmazlar, M., Guclu, N., Yanmaz, E.: J. Alloys Compd. 415, 300 (2006)

    Article  Google Scholar 

  4. Kaur, B., Bhat, M., Licci, F., Kumar, R., Kotru, P.N., Bamzai, K.K.: Nucl. Instrum. Methods Phys. Res. 222, 175 (2004)

    Article  ADS  Google Scholar 

  5. Uzun, O., Karaaslan, T., Keskin, M.: J. Alloys Compd. 358, 104 (2003)

    Article  Google Scholar 

  6. Martinez, E., Romera, J., Lousa, A., Esteve, J.: Appl. Phys. A 77, 419 (2003)

    Article  ADS  Google Scholar 

  7. Sun, J., Francis, L.F., Gerberich, W.W.: Polym. Eng. Sci. 45, 207 (2005)

    Article  Google Scholar 

  8. Terzioglu, C., Varilci, A., Beleni, I.: J. Alloys Compd. 478, 836 (2009)

    Article  Google Scholar 

  9. Cetinkara, H.A., Yilmazar, M., Ozturk, O., Nursoy, M., Terzioglu, C.: Int. Conf. Supercond. Magn. (ICSM2008). 153, 012038 (2009)

    Google Scholar 

  10. Aydin, H., Cakiroglu, O., Nursoy, M., Terzioglu, C.: Chin. J. Phys. 47, 192 (2009)

    Google Scholar 

  11. Leenders, A., Ulldich, M., Freyhardt, H.C.: Physica C 279, 173 (1997)

    Article  ADS  Google Scholar 

  12. Mohammed, N.H., Abou-Aly, A.I., Ibrahim, I.H., Awad, R., Rekaby, M.: J. Alloys Compd. 486, 733 (2009)

    Article  Google Scholar 

  13. Mohammed, N.H., Abou-Aly, A.I., Ibrahim, I.H., Awad, R., Rekaby, M.: J. Supercond. Nov. Magn. (2011, in press)

  14. Anshukova, N.V., Vorob’ev, G.P., Golovashkin, A.I., Ivanenko, O.M., Kozel, Z.A., Krynetskii, I.B., Levitin, R.Z., Mil’, B.V., Mitsen, K.V., Snegirev, V.V.: Pisma Zh. Eksp. Teor. Fiz. 46, 373 (1987)

    ADS  Google Scholar 

  15. Tarnpieri, A., Celotti, G., Guicciardi, S., Melandri, C.: Mater. Chem. Phys. 42, 188 (1995)

    Article  Google Scholar 

  16. Satoa, T., Katagirib, K., Hokaria, T., Hatakeyamaa, Y., Murakamic, A., Nyilasd, A., Kasabab, K., Teshimae, H., Hiranoe, H.: Physica C 445–448, 422 (2006)

    Article  Google Scholar 

  17. Uzuna, O., Kölemena, U., Çelebib, S., Güçlüa, N.: J. Eur. Ceram. Soc. 25, 969 (2005)

    Article  Google Scholar 

  18. Yahya, A.K., Hamid, N.A., Abd-Shukor, R., Imad, H.: Ceram. Int. 30, 1597 (2004)

    Article  Google Scholar 

  19. Khalil, S.M.: J. Phys. Chem. Solids 62, 457 (2001)

    Article  ADS  Google Scholar 

  20. Veerender, C., Dumke, V.R., Nagabhooshnam, M.: Phys. Status Solidi A 144, 299 (1994)

    Article  ADS  Google Scholar 

  21. Kiesewetter, L., Zhang, J.M., Hudeau, D., Steckenborn, A.: Sens. Actuators A, Phys. 35, 153 (1992)

    Article  Google Scholar 

  22. Kang, K., Kim, K., Lee, H.: Opt. Laser Technol. 39, 449 (2007)

    Article  ADS  Google Scholar 

  23. Akhter, N., ChulJung, H., SeobChang, H., SukKim, K.: Opt. Laser Technol. 41, 526 (2009)

    Article  ADS  Google Scholar 

  24. Voronin, G.F., Degterov, S.A.: J. Solid State Chem. 110, 50 (1994)

    Article  ADS  Google Scholar 

  25. Abou Aly, A.I., Awad, R., Kamal, M., Anas, M.: J. Low Temp. Phys. (2011). doi:10.1007/s10909-010-0339-4

  26. Foerster, C.E., Lima, E., Rodrigues, P.Jr., Serbena, F.C., Lepienski, C.M., Cantão, M.P., Jurelo, A.R., Obradors, X.: Braz. J. Phys. 38, 341 (2008)

    Article  Google Scholar 

  27. Luo, J., Stevens, R.: Ceram. Int. 25, 281 (1999)

    Article  Google Scholar 

  28. Jang, B., Matsubara, H.: Mater. Lett. 59, 3462 (2005)

    Article  Google Scholar 

  29. Cho, S., de Arenas, I.B., Arenas, F.J., Ochoa, J., Ochoa, J.L.: J. Alloys Compd. 288, 211 (1999)

    Article  Google Scholar 

  30. Mott, B.W.: Microindentation Hardness Testing. Butterworths, London (1956)

    Google Scholar 

  31. Bückle, H.: In: Westbrook, J.H., Conrad, H. (eds.) The Science of Hardness Testing and Its Research Applications, p. 199. ASME, Metal Park (1973)

    Google Scholar 

  32. Bull, S.J., Page, T.F., Yoffe, E.H.: Philos. Mag. Lett. 59, 281 (1989)

    Article  ADS  Google Scholar 

  33. Li, H., Bradt, R.C.: J. Mater. Sci. 28, 917 (1993)

    Article  ADS  Google Scholar 

  34. Li, H., Han, Y.H., Bradt, R.C.: J. Mater. Sci. 29, 5641 (1994)

    Article  ADS  Google Scholar 

  35. Jain, A., Razdan, A.K., Kotru, P.N., Wanklyn, B.M.: J. Mater. Sci. 29, 3847 (1994)

    Article  ADS  Google Scholar 

  36. Tabor, D.: The Hardness of Metals. Oxford University Press, Oxford (1951)

    Google Scholar 

  37. Hays, C., Kendall, E.G.: Metall 6, 275 (1973)

    Article  Google Scholar 

  38. Upit, G.P., Varchenya, S.A.: Phys. Status Solidi A 17, 831 (1966)

    Article  Google Scholar 

  39. Weiss, H.J.: Phys. Status Solidi A 99, 491 (1987)

    Article  ADS  Google Scholar 

  40. Ma, Q., Clarke, D.R.: J. Mater. Res. 10, 853 (1995)

    Article  ADS  Google Scholar 

  41. Frohlich, F., Grau, P., Grellmann, W.: Phys. Status Solidi A 42, 79 (1977)

    Article  ADS  Google Scholar 

  42. Michels, B.D., Frischat, G.H.: J. Mater. Sci. 17, 329 (1982)

    Article  ADS  Google Scholar 

  43. Oliver, W.C., Hutchings, R., Pethica, J.B.: In: Blau, P.J., Lawn, B.R. (eds.) Microindentation Techniques in Materials Science and Engineering, p. 90. ASTM, Philadelphia (1986)

    Google Scholar 

  44. Gong, J., Wu, J., Guan, Z.: J. Eur. Ceram. Soc. 19, 2625 (1999)

    Article  Google Scholar 

  45. Li, H., Bradt, R.C.: J. Mater. Sci. 31, 1065 (1996)

    Article  ADS  Google Scholar 

  46. Sangwal, K.: Mater. Chem. Phys. 63, 145 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Awad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awad, R., Abou Aly, A.I., Kamal, M. et al. Mechanical Properties of (Cu0.5Tl0.5)-1223 Substituted by Pr. J Supercond Nov Magn 24, 1947–1956 (2011). https://doi.org/10.1007/s10948-011-1150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-011-1150-4

Keywords

Navigation