Skip to main content
Log in

Investigation of Cr addition effect on structural, morphological, electrical and magnetic properties of Bi(Pb)-2212 superconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The main purpose of this research work will assess the effect of Cr addition on the properties of Bi1.8Pb0.4Sr2CaCu2O8+d superconducting ceramics. The samples are produced from industrial powders with different amounts of Cr (0, 1, 2, 3, 4, 5, 6 and 7 wt %) by sol–gel synthesis route. The influence of doping element has been determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrical resistivity and magnetic characterizations. In particular, the eventual presence of secondary phases as a result of Cr doping on the undoped sample was investigated by using XRD. By means of SEM analysis, the Cr doping influence on the grain morphology of the samples was explored. Contrarily, the Tc,on and the Tc,off of the samples have been obtained by using electrical resistivity measurements and their behavior as a function of the Cr doping has been discussed. Finally, by performing magnetization analysis versus temperature and magnetic field, the behavior of the critical temperature Tc and of the critical current density Jc as a proportion of the Cr concentration has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors can be reached for a simple suggestion on the datasets produced and/or examined since the current work.

References

  1. R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Materials science challenges for high-temperature superconducting wireS. Nat. Mater. 6, 631–642 (2007)

    Article  CAS  Google Scholar 

  2. W.H. Fietz, C. Barth, S. Drotziger, W. Goldacker, R. Heller, S.I. Schlachter, K.P. Weiss, prospects of high temperature superconductors for fusion magnets and power applications. Fusion Eng. Des. 88(6–8), 440–445 (2013)

    Article  CAS  Google Scholar 

  3. J.G. Bednorz, K.A. Müller, Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift für Phys. B Condens. Matter. 64, 189–193 (1986). https://doi.org/10.1007/BF01303701

    Article  CAS  Google Scholar 

  4. B. Seeber, Handbook of Applied Superconductivity (IOP Publishing Ltd, Bristol, 1998)

    Book  Google Scholar 

  5. M. Noe, K.P. Juengst, F.N. Werfel, S. Elschner, J. Bock, F. Breuer, R. Kreutz, Testing bulk HTS modules for resistive superconducting fault current limiters. IEEE Trans. Appl. Supercond. 13, 1976–1979 (2003). https://doi.org/10.1109/TASC.2003.812953

    Article  CAS  Google Scholar 

  6. S. Marinel, D. Bourgault, O. Belmont, A. Sotelo, G. Desgardin, Microstructure and transport properties of YBCO zone melted samples processed in a microwave cavity and infra-red furnace. Phys. C Supercond. its Appl. 315, 205–214 (1999). https://doi.org/10.1016/S0921-4534(99)00202-6

    Article  CAS  Google Scholar 

  7. F. Ben Azzouz, A. M’Chirgui, B. Yangui, C. Boulesteix, M. Ben Salem, Synthesis, microstructural evolution and the role of substantial addition of PbO during the final processing of (Bi, Pb)-2223 superconductors. Phys. C Supercond. its Appl. 356, 83–96 (2001). https://doi.org/10.1016/S0921-4534(01)00124-1

    Article  CAS  Google Scholar 

  8. N. Musolino, S. Bals, G. Van Tendeloo, N. Clayton, E. Walker, R. Flükiger, Modulation-free phase in heavily Pb-doped (Bi, Pb)2212 crystals. Phys. C Supercond. its Appl. 399, 1–7 (2003). https://doi.org/10.1016/S0921-4534(03)01324-8

    Article  CAS  Google Scholar 

  9. Y. Li, S. Kaviraj, A. Berenov, G.K. Perkins, J. Driscoll, A.D. Caplin, G.H. Cao, Q.Z. Ma, B. Wang, L. Wei, Z.X. Zhao, Enhancement of critical current density of (Pb, Sn)-doped Bi-2212 superconductors at high temperature. Phys. C Supercond. its Appl. 355, 51–58 (2001). https://doi.org/10.1016/S0921-4534(00)01770-6

    Article  CAS  Google Scholar 

  10. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Highly enhanced superconducting properties of Eu-doped (Bi, Pb)-2212. Mater. Lett. 62, 2725–2728 (2008). https://doi.org/10.1016/j.matlet.2008.01.026

    Article  CAS  Google Scholar 

  11. S. Vinu, P.M. Sarun, R. Shabna, A. Biju, U. Syamaprasad, Microstructure and transport properties of Bi1.6Pb0.5Sr2-xLuxCa1.1Cu2.1O8+δ superconductor. Mater. Chem. Phys. 119, 135–139 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.049

    Article  CAS  Google Scholar 

  12. S. Uthayakumar, E. Srinivasan, R. Jayavel, C. Subramanian, Substitutional effect of Mn on floating zone growth Bi-2212 bulk textured crystals. Phys. C Supercond. its Appl. 383, 122–126 (2002). https://doi.org/10.1016/S0921-4534(02)01264-9

    Article  CAS  Google Scholar 

  13. S. Bal, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, Y. Zalaoglu, Role of cerium addition on structural and superconducting properties of Bi-2212 system. J. Supercond. Nov. Magn. 25, 847–856 (2012). https://doi.org/10.1007/s10948-011-1360-9

    Article  CAS  Google Scholar 

  14. O. Ozturk, E. Asikuzun, G. Yildirim, The role of Lu doping on microstructural and superconducting properties of Bi2Sr2CaLuxCu2Oy superconducting system. J. Mater. Sci. Mater. Electron. 24, 1274–1281 (2013). https://doi.org/10.1007/s10854-012-0918-z

    Article  CAS  Google Scholar 

  15. K. Belala, A. Galluzzi, M.F. Mosbah, M. Polichetti, Transport and magnetic properties of Bi(Pb)2212 superconducting ceramics doped by low rate of potassium. Mater. Sci. 39, 15–23 (2021). https://doi.org/10.2478/msp-2021-0005

    Article  CAS  Google Scholar 

  16. O. Ozturk, E. Asikuzun, M. Coskunyurek, N. Soylu, A. Hancerliogullari, A. Varilci, C. Terzioglu, The effect of Nd2O3 addition on superconducting and structural properties and activation energy calculation of Bi-2212 superconducting system. J. Mater. Sci. Mater. Electron. 25, 444–453 (2014). https://doi.org/10.1007/s10854-013-1608-1

    Article  CAS  Google Scholar 

  17. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Ylmazlar, C. Terzioglu, Vickers hardness measurements and some physical properties of Pr2O 3 doped Bi-2212 superconductors. J. Mater. Sci. Mater. Electron. 23, 1001–1010 (2012). https://doi.org/10.1007/s10854-011-0537-0

    Article  CAS  Google Scholar 

  18. S. Menassel, M.F. Mosbah, Y. Boudjadja, S.P. Altintas, A. Varilci, C. Terzioglu, Effect Y substitution on the microstructure, transport and magnetic proprieties of Bi2Sr2Ca1Cu2O8+δ superconducting ceramics. Mater. Sci. Pol. 34, 582–590 (2016). https://doi.org/10.1515/msp-2016-0077

    Article  CAS  Google Scholar 

  19. I. Chong, Z. Hiroi, M. Izumi, J. Shimoyama, Y. Nakayama, K. Kishio, T. Terashima, Y. Bando, M. Takano, High critical-current density in the heavily Pb-doped Bi2Sr2CaCu2O(8+δ) superconductor: Generation of efficient pinning centers. Science (80-. ) 276, 770–773 (1997). https://doi.org/10.1126/science.276.5313.770

    Article  CAS  Google Scholar 

  20. R. Funahashi, I. Matsubara, K. Ueno, K. Mizuno, Isotropic pinning in heavily Pb-doped Bi-2212/Ag tapes. Phys. C Supercond. its Appl. 315, 247–253 (1999). https://doi.org/10.1016/S0921-4534(99)00237-3

    Article  CAS  Google Scholar 

  21. L. Shi, Q. Dong, Y. Zhang, Effect of Pb-doping and annealing on the structure and Tc of Bi-2212 phase superconductor. Phys. C Supercond. its Appl. 341–348, 649–650 (2000). https://doi.org/10.1016/S0921-4534(00)00632-8

    Article  Google Scholar 

  22. D.M. Pooke, G.V.M. Williams, Oxygen loading in (Bi, Pb)-2212 and -2223 materials. Phys. C Supercond. its Appl. 354, 396–400 (2001). https://doi.org/10.1016/S0921-4534(01)00107-1

    Article  CAS  Google Scholar 

  23. F. Jean, G. Collin, M. Andrieux, N. Blanchard, A. Forget, S. Rousseau, J.F. Marucco, Oxygen excess in Bi-2212: study of a Pb-substituted compound. Phys. C Supercond. its Appl. 384, 345–350 (2003). https://doi.org/10.1016/S0921-4534(02)01969-X

    Article  CAS  Google Scholar 

  24. Raheleh Yousefi Seyede, Sobhani Azam, Salavati-Niasari. Masoud, A new nanocomposite superionic system (CdHgI4/HgI2):Synthesis, characterization and experimental investigation. Adv. Powder Technol. 28, 1258–1262 (2017). https://doi.org/10.1016/j.apt.2017.02.013

    Article  CAS  Google Scholar 

  25. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Phys. C Supercond. its Appl. 176, 95–105 (1991). https://doi.org/10.1016/0921-4534(91)90700-9

    Article  CAS  Google Scholar 

  26. H.R. Zhuang, H. Kozuka, S. Sakka, Preparation of superconducting Bi-Sr-Ca-Cu-O ceramics by the sol-gel method. J. Mater. Sci. 25, 4762–4766 (1990). https://doi.org/10.1007/BF01129938

    Article  CAS  Google Scholar 

  27. N. Hara, R. Ogawa, Y. Kawate, T. Tateishi, Preparation of Bi based high-Tc superconductors containing Pb and Sb by the sol-gel method. J. Mater. Res. 7, 292–298 (1992). https://doi.org/10.1557/JMR.1992.0292

    Article  Google Scholar 

  28. K. Ma, A.C. Pierre, Sol-gel processing of high-Tc superconductors in the Bi-(Pb)-Sr-Ca-Cu-O system. J. Mater. Res. 7, 1328–1335 (1992). https://doi.org/10.1557/JMR.1992.1328

    Article  CAS  Google Scholar 

  29. B.S. Ahn, Synthesis of BiSrCaCu(Ni)O ceramics from the gel precursors and the effect of Ni substitution. Bull. Korean Chem. Soc. 23, 1304–1308 (2002). https://doi.org/10.5012/bkcs.2002.23.9.1304

    Article  CAS  Google Scholar 

  30. F.H. Chen, H.S. Koo, T.Y. Tseng, Synthesis of high-Tc superconducting Bi-Pb Sr-Ca-Cu-O ceramics prepared by an ultrastructure processing via the oxalate route. J. Mater. Sci. 25, 3338–3346 (1990). https://doi.org/10.1007/BF00587696

    Article  CAS  Google Scholar 

  31. T.S. Hen, J.R. Chen, T.Y. Tseng, Preparation of bi0.7pb0.3sr1.0ca1.0cu1.8oy high-tc superconductor by the citrate method. Jpn. J. Appl. Phys. 29, 652–655 (1990). https://doi.org/10.1143/JJAP.29.652

    Article  Google Scholar 

  32. T.M. Chen, Y.H. Hu, Polymeric precursors for the preparation of Bi1.5Pb0.5Sr2Ca2Cu3Ox. J. Solid State Chem. 97, 124–130 (1992). https://doi.org/10.1016/0022-4596(92)90016-O

    Article  CAS  Google Scholar 

  33. Raheleh Yousefi Seyede, Abbas Alshamsi Hassan, Omid Amiri, Salavati-Niasari. Masoud, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  34. A. Galluzzi, K. Buchkov, E. Nazarova, V. Tomov, G. Grimaldi, A. Leo, S. Pace, M. Polichetti, Transport properties and high upper critical field of a Fe(Se, Te) iron based superconductor. Eur. Phys. J. Spec. Top. (2019). https://doi.org/10.1140/epjst/e2019-800169-5

    Article  Google Scholar 

  35. A. Galluzzi, K.M. Buchkov, E. Nazarova, V. Tomov, G. Grimaldi, A. Leo, S. Pace, M. Polichetti, Pinning energy and anisotropy properties of a Fe(Se, Te) iron based superconductor. Nanotechnology. 30, 254001 (2019). https://doi.org/10.1088/1361-6528/ab0c23

    Article  CAS  Google Scholar 

  36. A. Galluzzi, D. Mancusi, C. Cirillo, C. Attanasio, S. Pace, M. Polichetti, Determination of the transition temperature of a weak ferromagnetic thin film by means of an evolution of the method based on the Arrott Plots. J. Supercond. Nov. Magn. 31, 1127–1132 (2018). https://doi.org/10.1007/s10948-017-4281-4

    Article  CAS  Google Scholar 

  37. A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, M. Polichetti, DC magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor. J. Magn. Magn. Mater. 475, 125–129 (2019). https://doi.org/10.1016/J.JMMM.2018.11.119

    Article  CAS  Google Scholar 

  38. Galluzzi, A., Buchkov, K., Tomov, V., Nazarova, E., Leo, A., Grimaldi, G., Nigro, A., Pace, S., Polichetti, M.: Second Magnetization Peak Effect in a Fe(Se,Te) iron based superconductor. In: Journal of Physics: Conference Series. p. 012012. IOP Publishing (2019)

  39. M. Polichetti, A. Galluzzi, K. Buchkov, V. Tomov, E. Nazarova, A. Leo, G. Grimaldi, S. Pace, A precursor mechanism triggering the second magnetization peak phenomenon in superconducting materials. Sci. Rep. 11, 7247 (2021). https://doi.org/10.1038/s41598-021-86728-8

    Article  CAS  Google Scholar 

  40. V. Petrícek, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Zeitschrift fur Krist. 229, 345–352 (2014). https://doi.org/10.1515/zkri-2014-1737

    Article  CAS  Google Scholar 

  41. A. Amira, Y. Boudjadja, A. Saoudel, A. Varilci, M. Akdogan, C. Terzioglu, M.F. Mosbah, Effect of doping by low content of yttrium at Ca and Sr sites of Bi(Pb)-2212 superconducting ceramics. Phys. B Condens. Matter. 406, 1022–1027 (2011). https://doi.org/10.1016/j.physb.2010.12.052

    Article  CAS  Google Scholar 

  42. H.M. Rietveld, J. Appl. Cryst. 2(2), 65–71 (1969)

    Article  CAS  Google Scholar 

  43. A. Naseem, Shakeel, Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloy. Compd. 720, 502–509 (2017). https://doi.org/10.1016/j.jallcom.2017.05.293

    Article  CAS  Google Scholar 

  44. A. Naseem, Shakeel, Khan, Mohd, Mohsin Nizam Ansari, Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors. Ceram. Int. 44, 15972–15980 (2018). https://doi.org/10.1016/j.ceramint.2018.06.024

    Article  CAS  Google Scholar 

  45. B. Jayaram, P.C. Lanchester, M.T. Weller, Localization and interaction effects during superconductor-insulator transition of Bi2Sr2Ca1-xGdxCu2O8+d. Phys. Rev. B. 43, 5444–5450 (1991). https://doi.org/10.1103/PhysRevB.43.5444

    Article  CAS  Google Scholar 

  46. B.D. Cullity, Element of X-ray differaction (Addition-Wesley, Boston, 1978)

    Google Scholar 

  47. Y. Boudjadja, A. Amira, N. Mahamdioua, A. Saoudel, S. Menassel, A. Varilci, C. Terzioglu, S.P. Altintas, Microstructural and magneto-transport properties of Bi1.6Pb0.4Sr2Ca1−xGdxCu2O8+δ superconducting ceramics. Phys. B Condens. Matter. 505, 68–73 (2017). https://doi.org/10.1016/j.physb.2016.10.035

    Article  CAS  Google Scholar 

  48. C. Böhmer et al., Supercond. Sci.Technol. 10 (1997)].[Y. Enomoto et al.J. Phys. Condens.Matter 9 (1997)]).

  49. O. Kraut, C. Meingast, G. Bräuchle, H. Claus, A. Erb, G. Müller-Vogt, H. Wühl, Uniaxial pressure dependence of Tc of untwinned YBa2Cu3Ox single crystals for x=6.5–7. Phys. C Supercond. its Appl. 205, 139–146 (1993). https://doi.org/10.1016/0921-4534(93)90180-X

    Article  CAS  Google Scholar 

  50. H. Claus, M. Braun, A. Erb, K. Röhberg, B. Runtsch, H. Wühl, G. Bräuchle, P. Schweib, G. Müller-Vogt, Löhneysen, H. v.: The “90 K” plateau of oxygen deficient YBa2Cu3O7-δ single crystals. Phys. C Supercond. Appl. 198, 42–46 (1992). https://doi.org/10.1016/0921-4534(92)90263-C

    Article  CAS  Google Scholar 

  51. D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293–305 (1974). https://doi.org/10.1080/14786439808206556

    Article  CAS  Google Scholar 

  52. L. Zhang, Q. Qiao, X.B. Xu, Y.L. Jiao, L. Xiao, S.Y. Ding, X.L. Wang, Surface barrier and bulk pinning in MTG YBaCuO. Phys. C Supercond. its Appl. 445–448, 236–239 (2006). https://doi.org/10.1016/j.physc.2006.04.008

    Article  CAS  Google Scholar 

  53. C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250–253 (1962). https://doi.org/10.1103/PhysRevLett.8.250

    Article  Google Scholar 

  54. C.P. Bean, Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31–39 (1964). https://doi.org/10.1103/RevModPhys.36.31

    Article  Google Scholar 

  55. A. Umezawa, G.-W. Crabtree, J.-Z. Liu, H.-W. Weber, W.-K. Kwok, L.-H. Nurez, T.J. Morun, C.-H. Sowers, H. Claus, Enhanced critical magnetization currents due to fast neutron irradiation in single-crystal YBa2Cu3O7+δ. Phys. Rev. B 36, 7151–7153 (1987)

    Article  CAS  Google Scholar 

  56. W. Zhou, X. Xing, W. Wu, H. Zhao, Z. Shi, Second magnetization peak effect, vortex dynamics, and flux pinning in 112-type superconductor Ca0.8La0.2Fe1-xCoxAs2. Sci. Rep. 6, 22278 (2016). https://doi.org/10.1038/srep22278

    Article  CAS  Google Scholar 

  57. A. Galluzzi, K. Buchkov, V. Tomov, E. Nazarova, A. Leo, G. Grimaldi, A. Nigro, S. Pace, M. Polichetti, Evidence of pinning crossover and the role of twin boundaries in the peak effect in FeSeTe iron based superconductor. Supercond. Sci. Technol. 31, 015014 (2018). https://doi.org/10.1088/1361-6668/aa9802

    Article  CAS  Google Scholar 

  58. Miu, L., Ionescu, A.M., Miu, D., Ivan, I., Crisan, A.: Behavior of the Second Magnetization Peak in Self-nanostructured La2–xSrxCuO4 Single Crystals. Presented at the (2017)

  59. A. Galluzzi, M. Polichetti, K. Buchkov, E. Nazarova, D. Mancusi, S. Pace, Evaluation of the intragrain critical current density in a multidomain FeSe crystal by means of dc magnetic measurements. Supercond. Sci. Technol. 28, 115005 (2015). https://doi.org/10.1088/0953-2048/28/11/115005

    Article  CAS  Google Scholar 

  60. M.G. Adesso, C. Senatore, M. Polichetti, S. Pace, Harmonics of the AC susceptibility as probes to differentiate the various creep models. Phys. C Supercond. 404, 289–292 (2004). https://doi.org/10.1016/j.physc.2003.09.096

    Article  CAS  Google Scholar 

  61. M.G. Adesso, M. Polichetti, S. Pace, Harmonics of the AC susceptibility for the study of I-V curves in melt grown YBCO. Phys. C Supercond. Appl. 401, 196–200 (2004). https://doi.org/10.1016/j.physc.2003.09.036

    Article  CAS  Google Scholar 

  62. C. Senatore, M. Polichetti, D. Zola, T.D. Matteo, G. Giunchi, S. Pace, Vortex dynamics and pinning properties analysis of MgB 2 bulk samples by ac susceptibility measurements. Supercond. Sci. Technol. 16, 183–187 (2003). https://doi.org/10.1088/0953-2048/16/2/310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully would like to thank Dr. Sevgi Polat Altintas, Pr. Cabir Terzioglu (Abant Izzet Baysel university, Bolu-Turkey), Pr. Massimiliano Polichetti and Dr. Armando. Galluzzi (Salerno university- Italy) for their invaluable supports.

Funding

The authors of this publication note that they were not provided with any funding, grants, or other support during its realization.

Author information

Authors and Affiliations

Authors

Contributions

SPA and CT analyzed the XRD, SEM and resistivity results. AG and MP contributed to the magnetic analysis. YB commented on The first draft of the manuscript.

Corresponding author

Correspondence to S. Menassel.

Ethics declarations

Conflict of interest

The authors have no financial statement or other interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menassel, S., Galluzzi, A., Boudjadja, Y. et al. Investigation of Cr addition effect on structural, morphological, electrical and magnetic properties of Bi(Pb)-2212 superconductors. J Mater Sci: Mater Electron 34, 1145 (2023). https://doi.org/10.1007/s10854-023-10524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10524-5

Navigation