Skip to main content

Advertisement

Log in

Analysis of indentation size effect (ISE) behavior in low-load Vickers microhardness testing of (Sm123)1−x(Nd123)x superconductor system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indentation size effect (ISE) for (Sm123)1−x(Nd123)x superconducting samples which were fabricated by the solid state reaction technique for values of x = 0.00, 0.05, 0.10, 0.20, and 0.30 was investigated by analyzing the theoretical models. When the experimental data of a number of single crystals which have the different crystal structure and different chemical bonding inside the polycrystallined samples were analyzed with the ISE models, the sample encountering with resistance and elastic deformation was observed as well as plastic deformation. The microhardness values on different surfaces of materials were calculated by using Meyer Law, proportional specimen resistance model, modified proportional specimen resistance model, elastic/plastic deformation model and the Hays–Kendall (HK) approach. The results showed that the HK approach was determined as the most successful model. Furthermore, X-ray powder diffraction and scanning electron microscope measurements were analyzed for superconducting properties of (Sm123)1−x(Nd123)x superconductor system. The results showed that microhardness values at the minimum load and averaged plateau region of load increased with increase of Nd123 concentration. Nd123 content can be used as to be estimated the microhardness value of (Sm123)1−x(Nd123)x superconducting sample in the range of 0.878–2.717 GPa. The control of the microhardness value by using Nd123 content in (Sm123)1−x(Nd123)x superconducting structure can be useful in technological applications in superconductivity industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.H. Gong, J.J. Wu, Z.D. Guan, J. Eur. Ceram. Soc. 19, 2625–2631 (1999)

    Article  CAS  Google Scholar 

  2. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solids 51, 357–381 (2003)

    Article  CAS  Google Scholar 

  3. A. Leenders, M. Ullrich, H.C. Freyhardt, Physica C 279, 173–180 (1997)

    Article  CAS  Google Scholar 

  4. R.S. Vennila, N.V. Jaya, S. Natarajan, Mater. Lett. 59, 1764–1766 (2005)

    Article  CAS  Google Scholar 

  5. O. Ozturk, C. Terzioglu, I. Belenli, J. Supercond. Nov. Magn. 24, 381–390 (2011)

    Article  CAS  Google Scholar 

  6. M. Yilmazlar, H.A. Cetinkara, M. Nursoy, O. Ozturk, C. Terzioglu, Physica C-Supercond. Appl. 442, 101–107 (2006)

    Article  CAS  Google Scholar 

  7. U. Kolemen, O. Uzun, M. Yilmazlar, N. Guclu, E. Yanmaz, J. Alloy. Compd. 415, 300–306 (2006)

    Article  Google Scholar 

  8. H. Aydin, O. Cakiroglu, M. Nursoy, C. Terzioglu, Chin. J. Phys. 47, 192–206 (2009)

    CAS  Google Scholar 

  9. R. Awad, A.I. Abou Aly, M. Kamal, M. Anas, J. Supercond. Nov. Magn. 24, 1947–1956 (2011)

    Article  CAS  Google Scholar 

  10. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloy. Compd. 486, 733–737 (2009)

    Article  CAS  Google Scholar 

  11. U. Kolemen, J. Alloy. Compd. 425, 429–435 (2006)

    Article  Google Scholar 

  12. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yilmazlar, C. Terzioglu, J. Mater. Sci.-Mater. Electron. 23, 1001–1010 (2012)

    Article  CAS  Google Scholar 

  13. J.B. Quinn, G.D. Quinn, J. Mater. Sci. 32, 4331–4346 (1997)

    Article  CAS  Google Scholar 

  14. O. Ozturk, H.A. Cetinkara, E. Asikuzun, M. Akdogan, M. Yilmazlar, C. Terzioglu, J. Mater. Sci.-Mater. Electron. 22, 1501–1508 (2011)

    Article  CAS  Google Scholar 

  15. H.A. Cetinkara, M. Yilmazlar, O. Ozturk, M. Nursoy, C. Terzioglu, International conference on superconductivity and magnetism (Icsm), p. 153 (2009).

  16. H. Li, R.C. Bradt, J. Mater. Sci. 28, 917–926 (1993)

    Article  CAS  Google Scholar 

  17. Q. Ma, D.R. Clarke, J. Mater. Res. 10, 853–863 (1995)

    Article  CAS  Google Scholar 

  18. F. Fröhlich, P. Grau, W. Grellmann, Phys. Stat. Sol. (a) 42, 79–89 (1977)

    Article  Google Scholar 

  19. B.D. Michels, G.H. Frischat, J. Mater. Sci. 17, 329–334 (1982)

    Article  CAS  Google Scholar 

  20. W.C. Oliver, R. Hutchings, J.B. Pethica, in Microindentation Techniques in Materials Science and Engineering, ed. by P.J. Blau, B.R. Lawn (ASTM, Philadelphia, PA, 1986), p. 90

  21. M. Yilmazlar, O. Ozturk, O. Gorur, I. Belenli, C. Terzioglu, Supercond. Sci. Technol. 20, 365–371 (2007)

    Article  CAS  Google Scholar 

  22. K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)

    Article  CAS  Google Scholar 

  23. G.P. Upit, S.A. Varchenya, Phys. Status Solidi B 17, 831–835 (1966)

    Article  Google Scholar 

  24. S.J. Bull, T.F. Page, E.H. Yoffe, Mag. Lett. 59, 281–288 (1989)

    Article  CAS  Google Scholar 

  25. O. Ozturk, J. Mater. Sci.: Mater. Electron. 23, 1235–1242 (2012)

    Article  CAS  Google Scholar 

  26. C. Hays, E.G. Kendall, Metallurgica 6, 275–282 (1973)

    CAS  Google Scholar 

  27. J.H. Gong, Z. Zhao, Z.D. Guan, H.Z. Miao, J. Eur. Ceram. Soc. 20, 1895–1900 (2000)

    Article  CAS  Google Scholar 

  28. Z. Peng, J. Gong, H. Miao, J. Eur. Ceram. Soc. 24, 2193–2201 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Scientific and Technological Council of Turkey (TÜBİTAK) with project no: TBAG-110T622. The authors thank to Prof. Dr. Nazmi Turan Okumuşoğlu for his advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Celik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celik, S., Ozturk, O., Coşkun, E. et al. Analysis of indentation size effect (ISE) behavior in low-load Vickers microhardness testing of (Sm123)1−x(Nd123)x superconductor system. J Mater Sci: Mater Electron 24, 2218–2227 (2013). https://doi.org/10.1007/s10854-013-1082-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1082-9

Keywords

Navigation