Skip to main content
Log in

A Comparative Study on Deformation Behaviour of Superelastic NiTi with Traditional Elastic–Plastic Alloys in Sub-micron Scale

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A nanoindentation-based study is conducted to analyse the small-scale deformation behaviour of superelastic NiTi-based shape memory alloy. The mechanism is compared with respect to that for traditional elastic–plastic ferrous and non-ferrous alloys: ferritic stainless steel of grade 409 and Al. To develop a comprehensive insight into the deformation behaviour, various experiments including nanoindentation, optical microscopy, X-ray diffraction, differential scanning calorimetry are performed on all alloy systems. This detailed study demonstrates that structural properties are primarily controlled by the crystal structures of the phases present in the respective alloy systems. Among these three studied alloys, the highest and lowest nano-hardness is realized for the steel and Al, respectively. Intermediate hardness is noted for the NiTi alloy. Nevertheless, the localized deformation characteristics of the superelastic alloy appeared to be entirely different in relation to that for the ferrous and non-ferrous materials. Most importantly, a fourfold increment in the depth recovery is realized for the NiTi alloy in contrast to the traditional metallic system. To understand this exceptional recovery, detailed analysis is performed on the unloading response of all the alloys. The crucial role of reversible stress-induced martensitic transformation in contributing towards the depth recoverability for superelastic NiTi alloy is thereby revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dieter G E, Mechanical Metallurgy, (ed) SI Metric, 3rd. McGraw-Hill B. Co. 273 (1962). https://doi.org/10.1016/S0016-0032(62)91145-6.

  2. Gall K, and Sehitoglu H, Prog Mater Sci 15 (2012) 1.

  3. Otsuka K, and Ren X, Prog Mater Sci 50 (2005) 511. https://doi.org/10.1016/j.pmatsci.2004.10.001.

    Article  CAS  Google Scholar 

  4. Shaw J A, and Kyriakides S, J Mech Phys Solids 43 (1995) 1243.

  5. SUPERELASTIC TIRE, (n.d.). https://technology.nasa.gov/patent/LEW-TOPS-99.

  6. Mehrpouya M, and Bidsorkhi H C, Micro Nanosyst 8 (2017) 79. https://doi.org/10.2174/1876402908666161102151453.

    Article  CAS  Google Scholar 

  7. Thompson S A, Int Endod J 33 (2000) 297. https://doi.org/10.1046/j.1365-2591.2000.00339.x.

    Article  CAS  Google Scholar 

  8. Hopulele I, Istrate S, Stanciu S, and Calugaru G, J Optoelectron Adv Mater 6 (2004) 277.

    CAS  Google Scholar 

  9. Gall K, Sehitoglu H, Chumlyakov Y, and Kireeva I, Acta Mater 47 (1999) 1203.

    Article  CAS  Google Scholar 

  10. Gall K, Sehitoglu H, Chumlyakov Y I, and Kireeva I V, Acta Mater 47 (1999) 1203. https://doi.org/10.1016/S1359-6454(98)00432-7.

    Article  CAS  Google Scholar 

  11. Kumar S, Marandi L, Balla V K, Bysakh S, Piorunek D, Eggeler G, Das M, and Sen I, Materialia 8 (2019) 100456. https://doi.org/10.1016/j.mtla.2019.100456.

    Article  CAS  Google Scholar 

  12. Kumar S, Kumar I A, Marandi L, and Sen I, Acta Mater 201 (2020) 1. https://doi.org/10.1016/j.actamat.2020.09.080.

    Article  CAS  Google Scholar 

  13. Jose S, Chakraborty G, and Bhattacharyya R, J Intell Mater Syst Struct 29 (2018) 2709. https://doi.org/10.1177/1045389X18778361.

    Article  Google Scholar 

  14. Jose S, Chakraborty G, and Bhattacharyya R, J Intell Mater Syst Struct 31 (2020) 349. https://doi.org/10.1177/1045389X19888736.

    Article  Google Scholar 

  15. Bayraktar E, Manuf Eng 44 (2011) 35.

    Google Scholar 

  16. Babu K T, Kumar P K, and Muthukumaran S, Procedia Mater Sci 6 (2014) 648. https://doi.org/10.1016/j.mspro.2014.07.080.

    Article  CAS  Google Scholar 

  17. ASTM International, ASTM Standard: F2004–17, Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys, ASTM International (2004) p 1. https://doi.org/10.1520/F2004-17.2.

  18. Gall K, Sehitoglu H, Chumlyakov Y I, Kireeva I V, and Maier H J, J Eng Mater Technol 121 (1999) 28. https://doi.org/10.1115/1.2815995.

    Article  CAS  Google Scholar 

  19. Il Jang J, Lance M J, Wen S, Tsui T Y, and Pharr G M, Acta Mater 53 (2005) 1759. https://doi.org/10.1016/j.actamat.2004.12.025.

    Article  CAS  Google Scholar 

  20. Schuh C A, Mason J K, and Lund A C, Nat Mater 4 (2005) 617. https://doi.org/10.1038/nmat1429.

    Article  CAS  Google Scholar 

  21. Oliver W C, and Pharr G M, J Mater Res 7 (1992) 1564

    Article  CAS  Google Scholar 

  22. Fisher Cripps A C, Nanoindentation, Springer International Publishing, Cham (2011).

    Book  Google Scholar 

  23. Pfetzing-Micklich J, Somsen C, Dlouhy A, Begau C, Hartmaier A, Wagner M F X, and Eggeler G, Acta Mater 61 (2013) 602. https://doi.org/10.1016/j.actamat.2012.09.081.

    Article  CAS  Google Scholar 

  24. Bernard S, Balla V K, Bose S, and Bandyopadhyay A, Mater Sci Eng C 31 (2011) 815. https://doi.org/10.1016/j.msec.2010.12.007.

    Article  CAS  Google Scholar 

  25. Young M L, Wagner M F X, Frenzel J, Schmahl W W, and Eggeler G, Acta Mater 58 (2010) 2344. https://doi.org/10.1016/j.actamat.2009.12.021.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors sincerely acknowledge the Central Research Facility, Indian Institute of Technology-Kharagpur for the support received in performing various experiments to complete this research study.

Funding

Funding was provided by Science and Engineering Research Board (Grant No. YSS/2015/000976).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrani Sen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sujith Kumar, S., Sen, I. A Comparative Study on Deformation Behaviour of Superelastic NiTi with Traditional Elastic–Plastic Alloys in Sub-micron Scale. Trans Indian Inst Met 74, 2427–2434 (2021). https://doi.org/10.1007/s12666-021-02207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02207-8

Keywords

Navigation