Skip to main content
Log in

The microhardness indentation load/size effect in rutile and cassiterite single crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microhardness indentation load/size effect (ISE) on the Knoop microhardness of single crystals of TiO2 and SnO2 has been investigated. Experimental results have been analysed using the classical power law approach and from an effective indentation test load viewpoint. The Hays/Kendall concept of a critical applied test load for the initiation of plastic deformation was considered, but rejected to explain the ISE. A proportional specimen resistance (PSR) model has been proposed that consists of the elastic resistance of the test specimen and frictional effects at the indentor facet/specimen interface during microindentation. The microhardness test load, P, and the resulting indentation size, d, have been found to follow the relationship

$$P = a_1 d + a_2 d^2 = a_1 d + (P_c /d_0^2 ) d^2$$

The ISE is a consequence of the indentation-size proportional resistance of the test specimen as described by a 1. a 2 is found to be related to the load-independent indentation hardness. It consists of the critical indentation load, P c, and the characteristic indentation size, d o.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kick, Leipzig Felix Edition (1885).

  2. H. O'Neill, “The Hardness of Metals and its Measurement” (Sherwood, Cleveland, OH, 1934) p. 43.

    Google Scholar 

  3. B. W. Mott, “Micro-indentation Hardness Testing” (Butterworths Scientific, London, 1956) p. 101.

    Google Scholar 

  4. D. J. Clinton and R. Morrell, Mater. Chem. Phys. 17 (1973) 461.

    Article  Google Scholar 

  5. C. Hays and E. G. Kendall, Metall. 6 (1973) 275.

    Article  CAS  Google Scholar 

  6. E. Meyer, Phys. Z. 9 (1908) 66.

    CAS  Google Scholar 

  7. P. M. Sargent and T. F. Page, Proc. Brit. Ceram. Soc. 26 (1978) 209.

    CAS  Google Scholar 

  8. J. T. Czernuszka and T. F. Page, J. Mater. Sci. 22 (1987) 3907.

    Article  CAS  Google Scholar 

  9. P. N. Kotru, A. K. Razdan and B. M. Wanklyn, ibid. 24 (1989) 793.

    Article  CAS  Google Scholar 

  10. H. Li and R. C. Bradt, J. Amer. Ceram. Soc. 73 (1990) 1360.

    Article  CAS  Google Scholar 

  11. Idem, ibid. 74 (1991) 1053.

    Article  CAS  Google Scholar 

  12. D. R. Tate, Trans. ASM 35 (1945) 374.

    Google Scholar 

  13. N. Gane and J. M. Cox, Phil. Mag. 22 (1970) 881.

    Article  CAS  Google Scholar 

  14. S. A. Varchenya, F. O. Muktepavel and G. P. Upit, Sov. Phys. Solid State 11 (1970) 2300.

    Google Scholar 

  15. G. P. Upit and S. A. Varchenya, in “The Science of Hardness Testing and its Research Applications”, edited by J. H. Westbrook and H. Conrad (ASM, Metals, Park, OH, 1973) p. 135.

    Google Scholar 

  16. S. J. Bull, T. F. Page and E. H. Yoffe, Phil. Mag. Lett. 59 (1989) 281.

    Article  CAS  Google Scholar 

  17. P. M. Sargent, in “Microindentation Techniques in Materials Science and Engineering”, edited by P. J. Blau and B. R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 160.

    Google Scholar 

  18. N. Gane and F. P. Bowden, J. Appl. Phys. 39 (1968) 1432.

    Article  CAS  Google Scholar 

  19. J. L. Loubet, J. M. Georges, O. Marchesini and G. Meille, J. Tribol. 106 (1984) 43.

    Article  CAS  Google Scholar 

  20. J. L. Loubet, J. M. Georges and G. Meille, in “Microindentation Techniques in Materials Science and Engineering”, edited by P. J. Blau and B. R. Lawn, ASTM STP 889 (American Society for Testing and Materials, Philadelphia, PA, 1984) p. 72.

    Google Scholar 

  21. M. F. Doerner and W. D. Nix, J. Mater. Res. 1 (1986) 601.

    Article  Google Scholar 

  22. G. M. Pharr and R. E. Cook, ibid. 5 (1990) 847.

    Article  Google Scholar 

  23. E. O. Bernhardt, Z. Metallkde 33 (1941) 135.

    CAS  Google Scholar 

  24. F. Frohlich, P. Grau and W. Grellmann, Phys. Status Solidi 42 (1977) 79.

    Article  Google Scholar 

  25. K. Hirao and M. Tomozawa, J. Amer. Ceram. Soc. 70 (1987) 497.

    Article  CAS  Google Scholar 

  26. J. B. Wachtman Jr, W. E. Tefft and D. G. Lam Jr, J. Res. Nat. Bur. Stand. A Phys. Chem. 66A (1962) 465.

    Article  CAS  Google Scholar 

  27. E. Chang and E. K. Graham, J. Geophys. Res. 80 (1975) 2595.

    Article  CAS  Google Scholar 

  28. M. Atkinson and H. Shi, Mater. Sci. Tech. 5 (1989) 613.

    Article  CAS  Google Scholar 

  29. C. A. Brookes, J. B. O'Neill and B. A. W. Redfern, Proc. R. Soc. Lond. A322 (1971) 73.

    Article  Google Scholar 

  30. D. H. Buckley and K. Miyoshi, Wear 100 (1984) 333.

    Article  CAS  Google Scholar 

  31. Y. Enomoto and K. Yamanaka, in “Ceramics Databook”, edited by S. Saito and H. Yanagida (Gordon and Breach, New York, 1987) p. 299.

    Google Scholar 

  32. H. Li and R. C. Bradt, Mater. Sci. Engng A142 (1991) 51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Bradt, R.C. The microhardness indentation load/size effect in rutile and cassiterite single crystals. Journal of Materials Science 28, 917–926 (1993). https://doi.org/10.1007/BF00400874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00400874

Keywords

Navigation