Skip to main content
Log in

A mechanochemical approach to manufacturing bamboo cellulose nanocrystals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bamboo cellulose nanocrystals (BCNC) were manufactured via a mechanochemical approach with the dissolving action of phosphoric acid on cellulose. The effects of phosphoric acid concentration, reaction time, reaction temperature, and ultrasonication time on the yield of BCNC were investigated. Micromorphology and microstructure of BCNC were studied using scanning electron microscopy and transmission electron microscopy. Results showed that BCNC were short rod-like particles with 100–200 nm in length and 15–30 nm in width, forming an interconnected network structure. X-ray diffraction results indicated that the crystalline structure of BCNC transformed from cellulose I to cellulose II, compared to cellulose pulp, with the crystallinity index declining from 66.44 to 59.62 %. The thermal properties of BCNC were investigated by thermogravimetric analysis and revealed that BCNC exhibited lower thermal stability compared to cellulose pulp. This research work provides a low-cost approach and mild operating conditions to manufacturing BCNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hsieh YL (2013) Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48:7837–7846. doi:10.1007/s10853-013-7512-5

    Article  Google Scholar 

  2. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  Google Scholar 

  3. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99

    Article  Google Scholar 

  4. Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  Google Scholar 

  5. Zhang JH, Zhang JQ, Lin L, Chen TM, Zhang J, Liu SJ, Li ZJ, Ouyang PK (2009) Dissolution of microcrystalline cellulose in phosphoric acid-molecular changes and kinetics. Molecules 14:5027–5041

    Article  Google Scholar 

  6. Zhang F, Qiu W, Yang L, Endo T, Hirotsu T (2002) Mechanochemical preparation and properties of a cellulose-polyethylene composite. J Mater Chem 12:24–26

    Article  Google Scholar 

  7. Zhang W, Liang M, Lu CH (2007) Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14:447–456

    Article  Google Scholar 

  8. Lear G, Harbottle MJ, Sills G, Knowles CJ, Semple KT, Thompson IP (2007) Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environ Pollut 146:139–146

    Article  Google Scholar 

  9. Mulligan CN, Eftekhari F (2003) Remediation with surfactant foam of PCP-contaminated soil. Environ Geol 70:269–279

    Article  Google Scholar 

  10. Huang P, Wu M, Kuga S, Wang D, Wu D, Huang Y (2012) One-step dispersion of cellulose nanofibers by mechanochemical esterification in an organic solvent. ChemSusChem 5:2319–2322

    Article  Google Scholar 

  11. Huang P, Wu M, Kuga S, Huang Y (2013) Aqueous pretreatment for reactive ball milling of cellulose. Cellulose 20:2175–2178

    Article  Google Scholar 

  12. Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    Google Scholar 

  13. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  14. Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129

    Article  Google Scholar 

  15. Boerstoel H, Maatman H, Westerink JB, Koenders BM (2001) Liquid crystalline solutions of cellulose in phosphoric acid. Polymer 42:7371–7379

    Article  Google Scholar 

  16. Zhao H, Feng X, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90:073112

    Article  Google Scholar 

  17. Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264

    Article  Google Scholar 

  18. Faria Tischer PCS, Sierakowski MR, Westfahl H Jr, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11:1217–1224

    Article  Google Scholar 

  19. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  Google Scholar 

  20. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  Google Scholar 

  21. Park SHP, Lee SG, Kim SH (2013) The use of a nanocellulose-reinforced polyacrylonitrile precursor for the production of carbon fibers. J Mater Sci 48:6952–6959. doi:10.1007/s10853-013-7503-6

    Article  Google Scholar 

  22. Troedec M, Sedan D, Peyratout C, Bonnet J, Smith A, Guinebretiere R (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A 39:514–522

    Article  Google Scholar 

  23. Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275

    Article  Google Scholar 

  24. Mihranyan A, Esmaeili M, Razaq A, Alexeichik D, Lindström T (2011) Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J Mater Sci 47:4463–4472. doi:10.1007/s10853-012-6305-6

    Article  Google Scholar 

  25. Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46

    Article  Google Scholar 

  26. Adsul M, Soni SK, Bhargava SK, Bansal V (2012) Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles. Biomacromolecules 13:2890–2895

    Article  Google Scholar 

  27. Besbes I, Vilar MR, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  Google Scholar 

  28. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101:5685–5692

    Article  Google Scholar 

  29. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Lkkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  30. Mansikkamäki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12:233–242

    Article  Google Scholar 

  31. Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442

    Article  Google Scholar 

  32. Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  33. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviours of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  Google Scholar 

  34. Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. doi:10.1007/s10853-011-5696-0

    Article  Google Scholar 

  35. Lu J, Wang T, Drzal LT (2008) Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Composites Part A 39:738–746

    Article  Google Scholar 

  36. Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8

    Article  Google Scholar 

  37. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336

    Article  Google Scholar 

  38. Li JH, Wei XY, Wang QH, Chen JC, Chang G, Kong LX, Su JB, Liu YH (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  Google Scholar 

  39. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  40. Mirhosseini H, Tan CP, Hamid NSA, Yusof S (2008) Effect of Arabic gum, xanthan gum and orange oil contents on zeta-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids Surf A 315:47–56

    Article  Google Scholar 

  41. Podsiadlo P, Choi SY, Shim B, Lee J, Cuddihy M, Kotov NA (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the generous financial support of the Project of Advanced Forestry Science and Technology (Grant No. 2014-4-30) and the National Natural Science Foundation of China (Grant No. 31170520, 31370560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Lin, W., Tang, L. et al. A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50, 611–619 (2015). https://doi.org/10.1007/s10853-014-8620-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8620-6

Keywords

Navigation