Skip to main content
Log in

Effect of grain size on crystal structure and electric properties of Bi(Ni2/3Ta1/3)O3-PbTiO3 ferroelectric ceramics

  • Original Article
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The effect of grain size on crystal structure and the ferroelectric, dielectric, and piezoelectric properties of 0.38Bi(Ni2/3Ta1/3)O3-0.62PbTiO3 ceramics was studied herein. By controlling the sintering time, 0.38Bi(Ni2/3Ta1/3)O3-0.62PbTiO3 ceramics with different grain sizes were prepared by the conventional solid-state reaction. It was found that the crystal structure of the ceramics changed slightly with the increase of grain size, from a pure tetragonal perovskite structure to a combination of tetragonal and rhombohedral phases. Both the Curie temperature TC and the depolarization temperature Td of the ceramics decreased with increasing grain size. However, the degree of dielectric relaxation first increased and then decreased, with the relaxation factor γ ranging from 1.35 to 1.87. The remnant polarization Pr and coercive field EC also first increased and then decreased, whereas the strain increased with the increase of grain size. The high field strain coefficient d*33 and piezoelectric coefficient d33 both increased with the increase of grain size. However, in this ceramic system, the electromechanical coupling coefficient kp and mechanical quality factor Qm changed independently of the variation in grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Zhao, V. Buscaglia, M. Viviani et al., Phys. Rev. B 70, 024107 (2004)

    Article  CAS  Google Scholar 

  2. S.V. Titov, L.A. Shilkina, V.V. Titov et al., Ferroelectrics 576, 136–147 (2021)

    Article  CAS  Google Scholar 

  3. E.V. Barabanova, A.V. Skrylev, G.M. Akbaeva et al., Ferroelectrics 574, 45–52 (2021)

    Article  CAS  Google Scholar 

  4. E.V. Barabanova, A.A. Topchiev, O.V. Malyshkina, Phys. Solid State 60, 747–750 (2018)

    Article  CAS  Google Scholar 

  5. L. Lv, Y. Wang, L. Gan et al., J Mater Sci: Mater Electron 29, 14883–14889 (2018)

    CAS  Google Scholar 

  6. X.F. Zhao, A.K. Soh, Scripta Mater. 178, 313–317 (2020)

    Article  CAS  Google Scholar 

  7. T.M. Kamel, G. With, J. Eur. Ceram. Soc. 28, 851–861 (2008)

    Article  CAS  Google Scholar 

  8. H.T. Martirenat, J.C. Burfoot, J. Phys. C: Solid State Phys. 7, 3182–3192 (1974)

    Article  Google Scholar 

  9. X. Tang, H.L. Chan, J. Appl. Phys. 97, 034109 (2005)

    Article  CAS  Google Scholar 

  10. Y. Sudo, M. Hagiwara, S. Fujihara, Ceram. Int. 42, 8206–8211 (2016)

    Article  CAS  Google Scholar 

  11. Z. Cai, X. Wang, W. Hong et al., J. Am. Ceram. Soc. 101, 5487–5496 (2018)

    Article  CAS  Google Scholar 

  12. Y. Yue, X. Xu, M. Zhang et al., ACS Appl. Mater. Interfaces 13, 57548–57559 (2021)

    Article  CAS  Google Scholar 

  13. V. Buscaglia, M.T. Buscaglia, M. Viviani et al., J. Eur. Ceram. Soc. 26, 2889–2898 (2006)

    Article  CAS  Google Scholar 

  14. Z. Zhao, V. Buscaglia, M. Viviani, Buscaglia, et al., Phys. Rev. B 70, 024107 (2004)

  15. A. Simon, J. Ravez, M. Maglione, J. Phys.: Condens. Matter 16, 963–970 (2004)

    CAS  Google Scholar 

  16. K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  17. X. Wei, Y. Feng, X. Yao, Appl. Phys. Lett. 83, 2031–2033 (2003)

    Article  CAS  Google Scholar 

  18. C. Fu, J. Yang, W. Cai, J. Mater. Sci-Mater. El. 22, 47–51 (2011)

    Article  CAS  Google Scholar 

  19. C. Fu, F. Pan, W. Cai, Integr. Ferroelectr. 104, 1–7 (2008)

    Article  CAS  Google Scholar 

  20. S. Chen, X. Dong, T. Zeng et al., Ferroelectrics 363, 199–208 (2008)

    Article  CAS  Google Scholar 

  21. H. Zhang, H. Yan, H. Ning et al., Nanotechnology 20, 385708 (2009)

    Article  CAS  Google Scholar 

  22. W. Cai, C. Fu, J. Gao et al., J. Alloy. Compd. 480, 870–873 (2009)

    Article  CAS  Google Scholar 

  23. C. Xiao, Z. Chi, F. Li et al., Chinese Phys. 16, 3125 (2007)

    Article  CAS  Google Scholar 

  24. S. Ding, T. Song, X. Yang et al., Ferroelectr. 402, 55–59 (2010)

    Article  CAS  Google Scholar 

  25. G. Picht, N.H. Khansur, K.G. Webber et al., J. Appl. Phys. 128, 214105 (2020)

    Article  CAS  Google Scholar 

  26. X. Liu, S. Xue, F. Wang et al., Acta Mater. 164, 12–24 (2019)

    Article  CAS  Google Scholar 

  27. Y. Tan, G. Viola, V. Koval et al., J. Eur. Ceram. Soc. 39, 2064–2075 (2019)

    Article  CAS  Google Scholar 

  28. G. Viola, K.B. Chong, M. Eriksson et al., Appl. Phys. Lett. 103, 182903 (2013)

    Article  CAS  Google Scholar 

  29. H. Chen, B. Shen, J. Xu et al., J. Alloy. Compd. 551, 92–97 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Youth Project [Grant No. 51702317], the Youth Project of the Natural Science Foundation of Jiangxi Provincial Science and Technology [Grant No. 20212BAB214019], and the Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology [Grant No. JXUSTQJYX2020004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Pang.

Ethics declarations

Conflict of interest statement

The authors whose names are listed immediately below certify that this manuscript is the authors’ original work and has not been published nor has been submitted simultaneously elsewhere. There is no conflict of interest for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Pang, D. Effect of grain size on crystal structure and electric properties of Bi(Ni2/3Ta1/3)O3-PbTiO3 ferroelectric ceramics. J Electroceram 49, 77–84 (2022). https://doi.org/10.1007/s10832-022-00293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00293-8

Keywords

Navigation