Skip to main content
Log in

Multifunctional tuning of structural, dielectric, and magnetic properties of Ti-doped BaMnO3 ceramics

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

BaMn1−xTixO3 (with x = 0.00, 0.25, 0.50, 0.75, 1.00) ceramics were prepared via conventional solid-state reaction method. Rietveld’s refined XRD patterns revealed the phase transition from pure hexagonal to rhombohedral to tetragonal as the Ti content is increased in the BaMnO3 lattice. The FESEM images confirm the cuboid, flakes, angular, rod, and quasi-spherical grain morphology for BaMn1−xTixO3 at different concentrations of Ti ions, respectively. EDS spectra confirm each element according to their nominal compositions. Temperature-dependent dielectric spectra show two ferro phase transition peaks for 0.25 and 0.50 content of Ti ions, while the first transition peaks shifted below room temperature for x = 0.75 and 1.00. Complex impedance and modulus spectroscopy confirm the non-Debye-type relaxation in all the ceramics. The ac conductivity is observed to increase with increasing temperature, confirming the negative temperature coefficient resistance (NTCR) behavior of all the samples. Ti doping generates oxygen vacancies (Vo) and defects in the crystal lattice and leads to an increase in activation energy and hence temperature-dependent dielectric relaxation. The room-temperature ferromagnetism in Ti-doped BaMnO3 can be related to bound magnetic polarons (BMPs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. H.K. El Emam, A. Abdelwahab, S. El-Dek, W.M. El Rouby, Appl. Surf. Sci. 618, 156599 (2023)

    Article  Google Scholar 

  2. N. Ortega, A. Kumar, J. Scott, R.S. Katiyar, J. Phys.: Condens. Matter 27, 504002 (2015)

    CAS  PubMed  Google Scholar 

  3. M. Rafique, S. Hajra, M.Z. Iqbal, G. Nabi, S.S.A. Gillani, M. Bilal Tahir, Int. J. Energy Res. 45, 4145–4154 (2021)

    Article  CAS  Google Scholar 

  4. M. Mužević, I. Lukačević, I. Kovač, D. Gracin, A. Žužić, J. Macan, M.V. Pajtler, ChemPhysChem. 24, e202200837 (2023)

  5. T. Chakraborty, S. Ray, M. Itoh, Phys. Rev. B 83, 144407 (2011)

    Article  Google Scholar 

  6. S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, Nat. Mater. 10, 753–758 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. K. Iben Nassar, M. Slimi, N. Rammeh, S.S. Teixeira, M. Graça, J. Mater Sci.: Mater. Electron. 33, 20134–20143 (2022)

    CAS  Google Scholar 

  8. R. Ramesh, Nature 461, 1218–1219 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. D. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  10. S.K. Abbas, M.A. Aslam, M. Amir, S. Atiq, Z. Ahmed, S.A. Siddiqi, S. Naseem, J. Alloy. Compd. 712, 720–731 (2017)

    Article  CAS  Google Scholar 

  11. K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A. Paul BlessingtonSelvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, R. Murugaraj, J. Sol-Gel Sci. Technol. 88, 584–592 (2018)

    Article  CAS  Google Scholar 

  12. I. Clark, F. Marques, D. Sinclair, J. Eur. Ceram. Soc. 22, 579–583 (2002)

    Article  CAS  Google Scholar 

  13. G. Arlt, D. Hennings, G. De With, J. Appl. Phys. 58, 1619–1625 (1985)

    Article  CAS  Google Scholar 

  14. S. Parida, R. Choudhary, Phase Transitions 93, 981–991 (2020)

    Article  CAS  Google Scholar 

  15. N. Dang, D. Kozlenko, T. Phan, S. Kichanov, N. Dang, T. Thanh, L. Khiem, S. Jabarov, T. Tran, D. Vo, J. Electron. Mater. 45, 2477–2483 (2016)

    Article  CAS  Google Scholar 

  16. D. Kozlenko, N. Dang, T. Phan, S. Kichanov, L. Khiem, S. Jabarov, T. Tran, T. Manh, A. Le, T. Nguyen, J. Alloy. Compd. 695, 2539–2548 (2017)

    Article  CAS  Google Scholar 

  17. B. Poojitha, A. Rathore, S. Saha, J. Magn. Magn. Mater. 483, 212–218 (2019)

    Article  CAS  Google Scholar 

  18. G.M. Keith, C.A. Kirk, K. Sarma, N.M. Alford, E.J. Cussen, M.J. Rosseinsky, D.C. Sinclair, Chem. Mater. 16, 2007–2015 (2004)

    Article  CAS  Google Scholar 

  19. A. Rani, J. Kolte, P. Gopalan, Ceram Int 41, 14057–14063 (2015)

    Article  CAS  Google Scholar 

  20. T. Costanzo, J. McCracken, A. Rotaru, G. Caruntu, ACS Appl. Nano Mater. 1, 4863–4874 (2018)

    Article  CAS  Google Scholar 

  21. K.C. Verma, R.K. Kotnala, Mater. Res. Express 3, 055006 (2016)

    Article  Google Scholar 

  22. A.E. Ghandouri, L.E.H. Omari, S. Sayouri, T. Lamcharfi, A. Elbasset, E. Dhahri, Environ. Sci. Pollut. Res. 1–17 (2023)

  23. S. Satapathy, M. Singh, P. Pandit, P. Gupta, Appl. Phys. Lett. 100 (2012)

  24. F.A. Garcia, U. Kaneko, E. Granado, J. Sichelschmidt, M. Hölzel, J. Duque, C. Nunes, R. Amaral, P. Marques-Ferreira, R. Lora-Serrano, Phys. Rev. B 91, 224416 (2015)

    Article  Google Scholar 

  25. Y.C. Wu, S.F. Wang, S.H. Chen, J. Am. Ceram. Soc. 92, 2099–2108 (2009)

    Article  CAS  Google Scholar 

  26. A. Aimi, K. Horiuchi, Y. Yamaguchi, S. Ito, K. Fujimoto, J. Ceram. Soc. Japan 129, 73–78 (2021)

    Article  CAS  Google Scholar 

  27. R. Yimnirun, J. Tangsritrakul, S. Rujirawat, S. Limpijumnong, Ferroelectrics 381, 130–143 (2009)

    Article  CAS  Google Scholar 

  28. Y.C. Wu, S.F. Wang, S.H. Chen, J. Am. Ceram. Soc. 92, 2099–2108 (2009)

    Article  CAS  Google Scholar 

  29. F.A. Garcia, U. Kaneko, E. Granado, J. Sichelschmidt, M. Hölzel, J. Duque, C. Nunes, R. Amaral, P. Marques-Ferreira, R. Lora-Serrano, Phys. Rev. B 91, 224416 (2015)

    Article  Google Scholar 

  30. M. Safaepour, A.R. Shahverdi, H.R. Shahverdi, M.R. Khorramizadeh, A.R. Gohari, Avicenna J. Med. Biotechnol. 1, 111 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Xue, Y. Liu, M. Shi, P. Wang, L. Zhang, G. Liu, Z. Chen, Y. Chen, J. Mater. Sci.: Mater. Electron. 29, 2072–2079 (2018)

    CAS  Google Scholar 

  32. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, A. Loidl, Phys. Rev. B 61, 3922 (2000)

    Article  CAS  Google Scholar 

  33. N. Sareecha, W.A. Shah, M. Anis-ur-Rehman, M.L. Mirza, M. Awan, Solid State Ionics 303, 16–23 (2017)

    Article  CAS  Google Scholar 

  34. S. Selvasekarapandian, M. Vijayakumar, Mater. Chem. Phys. 80, 29–33 (2003)

    Article  CAS  Google Scholar 

  35. J. Fleig, J. Maier, J. Eur. Ceram. Soc. 24, 1343–1347 (2004)

    Article  CAS  Google Scholar 

  36. K.I. Nassar, N. Rammeh, Indian J. Phys. 97, 1749–1757 (2023)

    Article  Google Scholar 

  37. K.I. Nassar, N. Rammeh, S.S. Teixeira, M. Graça, J. Electron. Mater. 51, 370–377 (2022)

    Article  Google Scholar 

  38. K.I. Nassar, N. Rammeh, S.S. Teixeira, M. Graça, Appl. Phys. A 128, 373 (2022)

    Article  CAS  Google Scholar 

  39. M. Benamara, K.I. Nassar, P. Rivero-Antúnez, M. Essid, S.S. Teixeira, S. Zhao, A. Serrà, L. Esquivias, Nanomaterials 14, 402 (2024)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S. Sharma, K. Shamim, A. Ranjan, R. Rai, P. Kumari, S. Sinha, Ceram. Int. 41, 7713–7722 (2015)

    Article  CAS  Google Scholar 

  41. F. Borsa, D. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992)

    Article  CAS  Google Scholar 

  42. M.A.L. Nobre, S. Lanfredi, J. Phys. Chem. Solids 62, 1999–2006 (2001)

    Article  CAS  Google Scholar 

  43. A. Shukla, R. Choudhary, A. Thakur, J. Phys. Chem. Solids 70, 1401–1407 (2009)

    Article  CAS  Google Scholar 

  44. S.K. Parida, R.N.P. Choudhary, Phase Transitions, 93(10–11), 981–991 (2020)

  45. J. Bauerle, J. Phys. Chem. Solids 30, 2657–2670 (1969)

    Article  CAS  Google Scholar 

  46. M.B. Hossen, A.A. Hossain, J. Adv. Ceram. 4, 217–225 (2015)

    Article  CAS  Google Scholar 

  47. J. Coey, M. Venkatesan, C. Fitzgerald, Nat. Mater. 4, 173–179 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. Q.-L. Fang, J.-M. Zhang, K.-W. Xu, Physica B 424, 79–83 (2013)

    Article  CAS  Google Scholar 

  49. U. Topal, H. Ozkan, H. Sozeri, J. Magn. Magn. Mater. 284, 416–422 (2004)

    Article  CAS  Google Scholar 

  50. P. Xu, X. Han, H. Zhao, Z. Liang, J. Wang, Mater. Lett. 62, 1305–1308 (2008)

    Article  CAS  Google Scholar 

  51. D. Xue, G. Chai, X. Li, X. Fan, J. Magn. Magn. Mater. 320, 1541–1543 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Priyanka Thakur: methodology, writing-original draft, software, visualization. Shilpa Kumari: validation. Shristi Chaudhary: formal analysis, resources. Navdeep Sharma: formal analysis. Madan Lal: conceptualization, software, visualization, data curation, supervision, writing-review and editing.

Corresponding author

Correspondence to Madan Lal.

Ethics declarations

Competing interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Kumari, S., Chaudhary, S. et al. Multifunctional tuning of structural, dielectric, and magnetic properties of Ti-doped BaMnO3 ceramics. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00689-y

Keywords

Navigation