Skip to main content
Log in

Temperature dependent dielectric relaxation and current conduction mechanism in Ba and Ti co-doped bismuth ferrite ceramic

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ba (barium) and Ti (titanium) co-doped bismuth ferrite (Bi1−xBaxFe1−xTixO3 or BBFT) ceramics with x = 0.050, 0.075, 0.100, and 0.150 are synthesized by tartaric acid modified sol–gel technique. The Rietveld refinement of X-ray diffraction patterns confirms that no structural phase transition exists from rhombohedral to cubic phase by the co-doping of Ba and Ti up to 15%. The average crystallite size reduces from 26.62 nm to 14.30 nm and the lattice strain increases from 0.00379 to 0.00650 with the increase in co-doping concentration. The increase in dielectric constant whereas decrease in loss tangent was observed with an increase in co-doping concentration. The ac conductivity analysis employing Jonscher’s universal power law suggests the existence of small polaron hopping (SPH) mechanism and overlapping large polaron tunneling (OLPT) for low and high co-doping concentration respectively. The Arrhenius plots of all samples show that for a particular value of frequency ~104 Hz, ac conductivity of all the samples increases with the increase in temperature. The activation energy is found to lies between 0.14 eV and 0.61 eV. The Nyquist plot represents the effect of grain and grain boundaries in terms of equivalent electrical circuits, which reveals a temperature-dependent relaxation process. The frequency-dependent real and imaginary part of the impedance spectra of sample shows that after a critical frequency ~ 104 Hz, all the curves merges because of increased hopping rate of charge carries, which indicates the existence of negative temperature coefficient of resistance (NTCR). These kinds of variation suggest the improved dielectric properties of BBFT ceramics.

Graphical Abstract

Fitting to Jonscher’s power Law for BBFT-15. Inset: Fitting to Jonscher’s power Law at 50 °C and 100 °C. Rietveld refined XRD pattern of BBFT-075.

Highlights

  • No crystallographic phase transition was observed up to 15% of co-doping of Ba and Ti in BiFeO3.

  • With increase in co-doping concentration, average crystallite sizes decrease whereas lattice strain increases.

  • SPH and OLPT mechanism are appropriate for low and high co-doping concentrations respectively.

  • Ba and Ti co-doped bismuth ferrite shows the enhanced dielectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722. https://doi.org/10.1126/science.1080615

    Article  CAS  PubMed  Google Scholar 

  2. Spaldin NA, Fiebig M (2005) The renaissance of magnetoelectric multiferroics. Science 309(5733):391–392. https://doi.org/10.1126/science.1113357

    Article  CAS  PubMed  Google Scholar 

  3. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442(7104):759–765. https://doi.org/10.1038/nature05023

    Article  CAS  PubMed  Google Scholar 

  4. Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6(1):13–20. https://doi.org/10.1038/nmat1804

    Article  CAS  PubMed  Google Scholar 

  5. Ramesh R (2009) Emerging routes to multiferroics. Nature 461(7268):1218–1219. https://doi.org/10.1038/4611218a

    Article  CAS  PubMed  Google Scholar 

  6. Wu SM, Cybart SA, Yi D, Parker JM, Ramesh R, Dynes RC (2013) Full electric control of exchange bias. Phys Rev Lett 110(6):067202. https://doi.org/10.1103/PhysRevLett.110.067202

    Article  CAS  PubMed  Google Scholar 

  7. Fischer P, Polomska M, Sosnowska I, Szymanski M (1980) Temperature dependence of the crystal and magnetic structures of BiFeO3. J Phys C Solid State Phys 13(10):1931. https://doi.org/10.1088/0022-3719/13/10/012

    Article  CAS  Google Scholar 

  8. Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Ferroelectricity in a pure BiFeO3 ceramic. Appl Phys Lett 76(19):2764–2766. https://doi.org/10.1063/1.126468

    Article  CAS  Google Scholar 

  9. Nair SG, Satapathy J, Kumar NP (2020) Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite (BiFeO3). Appl Phys A 126(11):836. https://doi.org/10.1007/s00339-020-04027-x

    Article  CAS  Google Scholar 

  10. Chen JC, Wu JM (2007) Dielectric properties and ac conductivities of dense single-phased BiFeO3 ceramics. Appl Phys Lett 91(18):182903. https://doi.org/10.1063/1.2798256

    Article  CAS  Google Scholar 

  11. Banoth P, Sohan A, Kandula C, Kanaka RK, Kollu P (2022) Microwave-assisted solvothermal route for one-step synthesis of pure phase bismuth ferrite microflowers with improved magnetic and dielectric properties. ACS Omega 7(15):12910–12921. https://doi.org/10.1021/acsomega.2c00219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ray A, Behera B, Basu T, Vajandar S, Satpathy SK, Nayak P (2018) Modification of structural and dielectric properties of polycrystalline Gd-doped BFO–PZO. J Adv Dielectr 8(5):1850031. https://doi.org/10.1142/S2010135X18500315

    Article  CAS  Google Scholar 

  13. Du K, Wang F, Song XQ, Guo YB, Wang XC, Lu WZ, Lei W (2021) Correlation between crystal structure and dielectric characteristics of Ti4+ substituted CaSnSiO5 ceramics. J Eur Ceram Soc 41(4):2568–2578. https://doi.org/10.1016/j.jeurceramsoc.2020.12.010

    Article  CAS  Google Scholar 

  14. Song GL, Su J, Yang H, Zhang N, Chang F (2018) Modified crystal structure, dielectric properties, and magnetic phase transition temperature of Ca doped BiFeO3 ceramic. J Sol Gel Sci Technol 85:421–430. https://doi.org/10.1007/s10971-017-4541-6

    Article  CAS  Google Scholar 

  15. Godara P, Agarwal A, Ahlawat N, Sanghi S, Dahiya R (2014) Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic. J Alloy Compd 594:175–181. https://doi.org/10.1016/j.jallcom.2014.01.103

    Article  CAS  Google Scholar 

  16. Anjum G, Kumar R, Mollah S, Shukla DK, Kumar S, Lee CG (2010) Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3 (0.0≤x≤0.4) multiferroics. J Appl Phys 107(10). https://doi.org/10.1063/1.3386527

  17. Agarwal A, Sanghi S, Ahlawat N (2012) Structural transformation and improved dielectric and magnetic properties in Ti-substituted Bi0.8La0.2FeO3 multiferroics. J Phys D Appl Phys 45(16):165001. https://doi.org/10.1088/0022-3727/45/16/165001

    Article  CAS  Google Scholar 

  18. Rao TD, Asthana S (2014) Evidence of improved ferroelectric phase stabilization in Nd and Sc co-substituted BiFeO3. J Appl Phys 116(16). https://doi.org/10.1063/1.4898805

  19. Basith MA, Kurni O, Alam MS, Sinha BL, Ahmmad B (2014) Room temperature dielectric and magnetic properties of Gd and Ti co-doped BiFeO3 ceramics. J Appl Phys 115(2):024102. https://doi.org/10.1063/1.4861151

    Article  CAS  Google Scholar 

  20. Rout J, Choudhary RNP (2016) Structural transformation and multiferroic properties of Ba–Mn co-doped BiFeO3. Phys Lett A 380(1–2):288–292. https://doi.org/10.1016/j.physleta.2015.10.007

    Article  CAS  Google Scholar 

  21. Wang DH, Goh WC, Ning M, Ong CK (2006) Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl Phys Lett 88(21):212907. https://doi.org/10.1063/1.2208266

    Article  CAS  Google Scholar 

  22. Varshney D, Kumar A, Verma K (2011) Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics. J Alloy Compd 509(33):8421–8426. https://doi.org/10.1016/j.jallcom.2011.05.106

    Article  CAS  Google Scholar 

  23. Hang Q, Xing Z, Zhu X, Yu M, Song Y, Zhu J, Liu Z (2012) Dielectric properties and related ferroelectric domain configurations in multiferroic BiFeO3–BaTiO3 solid solutions. Ceram Int 38:S411–S414. https://doi.org/10.1016/j.ceramint.2011.05.022

    Article  CAS  Google Scholar 

  24. Wang T, Tu C, Ding Y, Lin T, Ku C, Yang W, Yu H, Wu K, Yao Y, Lee H (2011) Phase transition and ferroelectric properties of xBiFeO3–(1−x)BaTiO3 ceramics. Curr Appl Phys 11(3):S240–S243. https://doi.org/10.1016/j.cap.2011.01.037

    Article  Google Scholar 

  25. Yang C, Jiang JS, Qian FZ, Jiang DM, Wang CM, Zhang WG (2010) Effect of Ba doping on magnetic and dielectric properties of nanocrystalline BiFeO3 at room temperature. J Alloy Compd 507(1):29–32. https://doi.org/10.1016/j.jallcom.2010.07.193

    Article  CAS  Google Scholar 

  26. Wu H, Zhu X (2019) Microstructures, magnetic, and dielectric properties of Ba‐doped BiFeO3 nanoparticles synthesized via molten salt route. J Am Ceram Soc 102(8):4698–4709. https://doi.org/10.1111/jace.16348

    Article  CAS  Google Scholar 

  27. Makhdoom AR, Akhtar MJ, Rafiq MA, Hassan MM (2012) Investigation of transport behavior in Ba doped BiFeO3. Ceram Int 38(5):3829–3834. https://doi.org/10.1016/j.ceramint.2012.01.032

    Article  CAS  Google Scholar 

  28. Shinjo Y, Mori M, Fujihara S, Hagiwara M (2022) Ti doping and low-temperature sintering of BiFeO3 nanoparticles synthesized by the solvothermal method. Ceram Int 48(22):32723–32729. https://doi.org/10.1016/j.ceramint.2022.07.118

    Article  CAS  Google Scholar 

  29. Khomchenko VA, Kiselev DA, Vieira JM, Jian L, Kholkin AL, Lopes AML, Pogorelov YG, Araujo JP, Maglione M (2008) Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J Appl Phys 103(2):024105. https://doi.org/10.1063/1.2836802

    Article  CAS  Google Scholar 

  30. Das R, Mandal K (2012) Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J Magn Magn Mater 324(11):1913–1918. https://doi.org/10.1016/j.jmmm.2012.01.022

    Article  CAS  Google Scholar 

  31. Gautam A, Rangra VS (2010) Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite. Cryst Res Technol 45(9):953–956. https://doi.org/10.1002/crat.201000050

    Article  CAS  Google Scholar 

  32. Kumar M, Yadav KL (2006) Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J Appl Phys 100(7):074111. https://doi.org/10.1063/1.2349491

    Article  CAS  Google Scholar 

  33. Wu C, Qiu X, Ge W, Chen L, Liu C, Zhao H, Fisher JG (2023) A co-doping strategy to achieve high energy storage performance in BiFeO3-based ceramics. Ceram Int 29218–29228 https://doi.org/10.1016/j.ceramint.2023.06.208

  34. Deng H, Zhang M, Hu Z, Xie Q, Zhong Q, Wei J, Yan H (2014) Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics. J Alloy Compd 582:273–276. https://doi.org/10.1016/j.jallcom.2013.07.187

    Article  CAS  Google Scholar 

  35. Zhou X, Xiong Y, Pei Y, Chen W (2015) Effects of Ba and Ti codoping on stoichiometric and nonstoichiometric BiFeO3 multiferroic ceramics. Mater Sci Forum 815:154–158. https://doi.org/10.4028/www.scientific.net/MSF.815.154

  36. García-Zaldívar O, Díaz-Castañón S, Espinoza-Beltran FJ, Hernandez-Landaverde MA, López G, Faloh-Gandarilla J, Calderón-Piñar F (2015) BiFeO3 codoping with Ba, La and Ti: magnetic and structural studies. J Adv Dielectr 5(4):1550034. https://doi.org/10.1142/S2010135X15500344

    Article  CAS  Google Scholar 

  37. Karpinsky DV, Silibin MV, Trukhanov AV, Zhaludkevich AL, Latushka SI, Zhaludkevich DV, Khomchenko VA (2019) Evolution of crystal structure of Ba and Ti co-doped BiFeO3 ceramics at the morphotropic phase boundary. J Alloy Compd 803:1136–1140. https://doi.org/10.1016/j.jallcom.2019.06.145

    Article  CAS  Google Scholar 

  38. Ahmmad B, Kanomata K, Koike K, Kubota S, Kato H, Hirose F, Basith MA (2016) Large difference between the magnetic properties of Ba and Ti co-doped BiFeO3 bulk materials and their corresponding nanoparticles prepared by ultrasonication. J Phys D Appl Phys 49(26):265003. https://doi.org/10.1088/0022-3727/49/26/265003

    Article  CAS  Google Scholar 

  39. Khomchenko VA, Karpinsky DV, Zhaludkevich DV, Latushka SI, Franz A, Sikolenko VV, Paixão JA (2019) Temperature-driven structural transformations in Ca/Ti-and Ba/Ti-doped BiFeO3. Mater Lett 254:305–308. https://doi.org/10.1016/j.matlet.2019.07.091

    Article  CAS  Google Scholar 

  40. Karpinsky DV, Silibin MV, Trukhanov SV, Trukhanov AV, Zhaludkevich AL, Latushka SI, Kholkin AL (2020) Peculiarities of the crystal structure evolution of BiFeO3–BaTiO3 ceramics across structural phase transitions. Nanomaterials 10(4):801. https://doi.org/10.3390/nano10040801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carbonin S, Martignago F, Menegazzo G, Negro A (2002) X-ray single-crystal study of spinels: in situ heating. Phys Chem Miner 29:503–514. https://doi.org/10.1007/s00269-002-0262-6

    Article  CAS  Google Scholar 

  42. Ma Z, Tan L, Huang H, He L, Chen J, Lu H, Dove MT (2022) Neutron powder-diffraction study of phase transitions in strontium-doped bismuth ferrite: 1. Variation with chemical composition. J Phys Condens Matter 34(25):255401. https://doi.org/10.1088/1361-648X/ac6389

    Article  CAS  Google Scholar 

  43. Rani S, Shekhar M, Kumar P, Prasad S (2022) Study on quantitative Rietveld analysis of XRD patterns of different sizes of bismuth ferrite. Appl Phys A 128(12):1046. https://doi.org/10.1007/s00339-022-06171-y

    Article  CAS  Google Scholar 

  44. Singh MK, Jang HM, Ryu S, Jo MH (2006) Polarized Raman scattering of multiferroic BiFeO3 epitaxial films with rhombohedral R3c symmetry. Appl Phys Lett 88(4). https://doi.org/10.1063/1.2168038

  45. Kothari D, Reddy VR, Sathe VG, Gupta A, Banerjee A, Awasthi AM (2008) Raman scattering study of polycrystalline magnetoelectric BiFeO3. J Magn Magn Mater 320(3-4):548–552. https://doi.org/10.1016/j.jmmm.2007.07.016

    Article  CAS  Google Scholar 

  46. Datt G, Abhyankar AC (2017) Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites. J Appl Phys 122(3). https://doi.org/10.1063/1.4990275

  47. Shekhar M, Pradhan LK, Kumar L, Kumar P (2023) Dielectric relaxation behavior and conduction mechanism of Ca and Ti co-doped multiferroic bismuth ferrite. J Electron Mater 1–21 https://doi.org/10.1007/s11664-023-10563-y

  48. Pradhan DK, Misra P, Puli SV, Sahoo S, Katiyar RS (2014) Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J Appl Phys 115(24). https://doi.org/10.1063/1.4885420

  49. Dar MA, Majid K, Batoo KM, Kotnala RK (2015) Dielectric and impedance study of polycrystalline Li0.35−0.5XCd0.3NiXFe2.35−0.5XO4 ferrites synthesized via a citrate-gel auto combustion method. J Alloy Compd 632:307–320. https://doi.org/10.1016/j.jallcom.2015.01.190

    Article  CAS  Google Scholar 

  50. Vasundhara K, Achary SN, Deshpande SK, Babu PD, Meena SS, Tyagi AK (2013) Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J Appl Phys 113(19). https://doi.org/10.1063/1.4804946

  51. Chen W, Zhu W, Tan OK, Chen XF (2010) Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J Appl Phys 108(3). https://doi.org/10.1063/1.3476284

  52. Sharma S, Shamim K, Ranjan A, Rai R, Kumari P, Sinha S (2015) Impedance and modulus spectroscopy characterization of lead free barium titanate ferroelectric ceramics. Ceram Int 41(6):7713–7722. https://doi.org/10.1016/j.ceramint.2015.02.102

    Article  CAS  Google Scholar 

  53. Zulqarnain M, Ali SS, Hira U, Feng JF, Khan MI, Rizwan M, Javed K, Farid DG, Hasan MS (2022) Superparamagnetic contributions, optical band gap tuning and dominant interfacial resistive mechanisms in ferrites nanostructures. J Alloy Compd 894:162431. https://doi.org/10.1016/j.jallcom.2021.162431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Mahatma Gandhi Central University, Motihari, Bihar and IIT Patna, for extending experimental facilities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Material preparation, data collection, analysis and manuscript writing were performed by Sonu Rani, Mukesh Shekhar and Amar Dev. Supervision, investigation and review were done by Pawan Kumar, Manoranjan Kar and Surabhi Prasad. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pawan Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, S., Shekhar, M., Dev, A. et al. Temperature dependent dielectric relaxation and current conduction mechanism in Ba and Ti co-doped bismuth ferrite ceramic. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06373-1

Keywords

Navigation