Skip to main content

Advertisement

Log in

Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present study focuses on finding a good source of phycobiliproteins (PBP). We report a new cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1 as a good producer of PBP. The organism produced 445.6 μg PBP mg−1 dry biomass. The growth and PBP production of organism were optimized by varying pH of growth medium, nitrogen sources, light quality and sugars. The optimized conditions for PBP production were as follows: pH 8.0, 5 mmol L−1 KNO3, 10 mmol L−1 NaNO2, 0.5% sucrose and green light. The PBP production under these conditions ranged from 486 to 676.3 μg mg−1 dry biomass. The PBP were more stable when stored in alkaline pH at 4 °C under dark. As per survey of literature, except for Anabaena fertilissima, the amount of PBP is significantly higher than the amount of PBP produced by other cyanobacteria. Thus, this organism is a good candidate for the PBP production at commercial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ajyan KV, Selvaraju M, Thirugnanamoorthy K (2015) Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen source: an in-vitro study. J Biomass Bioenerg 47:436–441

    Article  Google Scholar 

  • Antelo FS, Costa JAV, Kalil SG (2008) Thermal degradation kinetics of the phycocyanin from Spirulina platensis. J Biochem Eng 41:43–47

    Article  CAS  Google Scholar 

  • Ashok kumar P, Narayanaswamy A (2010) Studies on growth and phycobilin pigments of the cyanobacterium Westiellopsis iyengarii. Int J Biotechnol Biochem 6:315–323

  • Ashwell G (1957) Colorimetric analysis of sugars. Method Enzymol 3:73–105

    Article  Google Scholar 

  • Babu TS, Kumar A, Varma AK (1991) Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. J Plant Physiol 95:492–497

    Article  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in filamentous blue green algae. J Cell Biol 58:419–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezy RP, Wiltbanka L, Kehoea DM (2011) Light dependent attenuation of phycoerythrin gene expression reveals convergent evolution of green light sensing in cyanobacteria. Proc Natl Acad Sci U S A 108:18542–18547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Borsari RRJ, Morioka LRI, Ribeiro MLL, Buzato JB, Pinotti MHP (2007) Mixotrophic growth of Nostoc sp. on glucose, sucrose and sugarcane molasses for phycobiliprotein production. J Acta Sci Biol Sci 29:9–13

    CAS  Google Scholar 

  • Campbell D (1996) Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix. J Microbiol 142:1255–1263

    Article  CAS  Google Scholar 

  • Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum—a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzym Microb Technol 20:221–224

    Article  CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agriculture Research, New Delhi

    Google Scholar 

  • Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterization and mass analysis of cyanobacterium Anabaena sp. PCCC 7120. J Mol Biol 278:369–388

    Article  CAS  PubMed  Google Scholar 

  • Hemlata, Fatima T (2009) Screening of cyanobacteria for phycobiliproteins and effect of different environmental stress on its yield. Bull Env Contam Toxicol 83:509–515

    Article  CAS  Google Scholar 

  • Han PP, Shen SG, Yang HY, Yao SU, Tan ZL, Zhong C, Jia SR (2016) Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. J Appl Phycol. doi:10.1007/s10811-016-0963-8:1-11

    Google Scholar 

  • Hancock M (1997) Potential for colourants from plant source in England and Wales. ADAS Boxworth, Cambridge

    Google Scholar 

  • He JA, Hu YJ, Jiang LJ (1997) Photodynamic action of phycobiliproteins: in situ generation of reactive oxygen species. J Biochem Biophys 1320:167–174

    Google Scholar 

  • Johnson EM, Kumar K, Das D (2014) Physicochemical parameters optimization and purification of phycobiliproteins from isolated Nostoc sp. J Bioresour Technol 166:541–547

    Article  CAS  Google Scholar 

  • Kannaujiya VK, Sinha RP (2016) Thermokinetic stability of phycocyanin and phycoerythrin in food-grade preservatives. J Appl Phycol 28:1063–1070

    Article  CAS  Google Scholar 

  • Khattar JIS, Kaur S, Kaushal S, Singh Y, Singh DP, Rana S, Gulati A (2015) Hyperproduction of phycobiliproteins by the cyanobacteria Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions. J Algal Res 12:463–469

    Article  Google Scholar 

  • Komárek J (2013) Cyanoprokaryota. 3. Heterocytous genera. In: B. Büdel, G. Gärtner, L. Krienitz, M. Schagerl (Eds.), Süswasserflora von Mitteleuropa. Springer Spektrum, Berlin, p. 1130

  • Laura CI, Dubaca IP, Thomas JP (1987) The effects of nitrogen deficiency on pigment and lipids of cyanobacteria. J Plant Physiol 83:838–843

    Article  Google Scholar 

  • Lebedeva NV, Biochenko VA, Semenova LR, Pronina NA, Stadnichuk IN (2005) Effect of glucose during photoheterotrophic growth of cyanobacterium Calothrix sp. PCC 7601 capable for chromatic adaptation. Russ J Plant Physol 52:235–241

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Ma R, Lu F, Bi Y, Hu Z (2015) Effect of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnol Lett 37:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisome. J Struct Biol 124:311–334

    Article  CAS  PubMed  Google Scholar 

  • Madhyastha HK, Vatsala TM (2007) Pigment production by Spirulina fussiformis in different photophysical conditions. J Biomol Eng 24:301–305

    Article  CAS  Google Scholar 

  • Maurya SS, Maurya JN, Pandey VD (2014) Factors regulating phycobiliprotein production in cyanobacteria. Int J Curr Microbiol App Sci 3:764–771

    CAS  Google Scholar 

  • Mishra SK, Shrivastav A, Maurya RR, Patidar SK, Haldar S, Mishra S (2012) Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India. J Protein Express Purif 81:5–10

    Article  CAS  Google Scholar 

  • Moore LR, Post AF, Rocap G, Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. J Limnol Oceanogr 47:989–996

    Article  CAS  Google Scholar 

  • Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (1995) Nitrogen-fixing cyanobacteria as source of phycobiliprotein pigments. Composition and growth performance of ten filamentous heterocystous strains. J Appl Phycol 7:17–23

    Article  CAS  Google Scholar 

  • Oberhaus L, Briand JF, Leboulanger C, Jacquet S, Humbert JF (2007) Comparitive effect of quality and quantity of light and temperature on the growth of the Planktothrix agardhii and Planktothrix rubescens. J Phycol 43:1191–1199

    Article  CAS  Google Scholar 

  • Oelmuller R, Grossman AR, Briggs WR (1988) Photo reversibility of the effect of red and green light pulses on the accumulation in darkness of mRNAs coding for phycocyanin and phycoerythrin Fremyella diplosiphon. J Plant Physiol 88:1084–1090

    Article  CAS  Google Scholar 

  • Ojit SK, Indrama T, Gunapati O, Avijeet SO, Subhalaxami SA, Silvia C, Indira DW, Romi K, Minerva S, Thadoi DA, Tiwari ON, Sharma GD (2015) The response of phycobiliproteins to light qualities in Anabaena circinalis. J Appl Biol Biotechnol 3:1–6

    Google Scholar 

  • Pandey VD, Pandey A, Sharma V (2013) Biotechnological applications of cyanobacterial phycobiliproteins. J Curr Microbiol Appl Sci 2:89–97

    Google Scholar 

  • Prasanna R, Pabby A, Singh PK (2004) Effect of glucose and light/dark environment on pigmentation profiles in Calothrix elenkenii. Folia Microbiol 49:26–30

    Article  CAS  Google Scholar 

  • Prasanna R, Venugopal V, Sood A, Jaiswal P, Kaushik BD (2006) Stimulation and pigment accumulation in Anabaena azollae strains: effect of light intensity and sugars. Folia Microbiol 51:50–56

    Article  Google Scholar 

  • Ranjitha K, Kaushik BD (2005) Purification of phycobiliproteins from Nostoc muscorum. J Sci Ind Res 64:372–375

    CAS  Google Scholar 

  • Rodríguez-Sánchez R, Ortiz-Butrón R, Blas-Valdivia B, Hernández-García A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. J Food Chem 135:2359–2365

    Article  Google Scholar 

  • Roman RB, Alvarez-Pez JM, Fernandez FGA, Grima EM (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:78–85

    Google Scholar 

  • Safferman RS, Morris ME (1964) Growth characteristics of the blue green algal virus LPP-1. J Bacteriol 88:771–775

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structure. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 140–205

  • Simeunovic JB, Markovic SB, Kovac DJ, Misan AC, Mandic AI, Svircev ZB (2012) Filamentous cyanobacteria from Vojvodina region as the source of phycobiliproteins pigments as potential natural colourants. Food Feed Res 39:23–32

    CAS  Google Scholar 

  • Simeunovic J, Beslin K, Svircev Z, Kovac D, Babic O (2013) Impact of nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains. J Appl Phycol 25:597–607

    Article  CAS  Google Scholar 

  • Singh Y, Khattar JIS, Singh DP, Rahi P, Gulati A (2014) Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India. J Biosci 39:1–15

    Article  Google Scholar 

  • Soltani N, Khavari-Nejad RA, Yazdi MT, Shokravi S (2007) Growth and some metabolic features of cyanobacterium Fischerella sp. FS18 in different combined nitrogen sources. J Sci Repub Iran 18:123–128

    CAS  Google Scholar 

  • Sonani RR, Rastogi RP, Madamwar D (2015) Antioxidant potential of phycobiliproteins: role in anti-aging research. Biochem Anal Biochem 4:1–8

    Article  Google Scholar 

  • Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Technol 99:188–194

    Article  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel MG, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bact Rev 35:171–205

  • Tiwari ON, Indrama T, Singh KO, Singh OA, Oinam G, Koijam L, Subhalaxmi A, Thadoi A, Indira W, Silvia C, Khangembam R, Shamjetshabam M, Premi P, Bidyababy T, Sarabati K, Sharma GD (2015) Enumeration, pigment analysis and nitrogenase activity of cyanobacteria isolated from unexplored rice fields of Manipur, India falling under Indo-Burma biodiversity hotspots. Int J Curr Microbiol App Sci 4:666–680

    Google Scholar 

  • Tripathi SN, Kapoor S, Shrivastava A (2007) Extraction and purification of an unusual phycoerythrin in a terrestrial desiccation tolerant cyanobacterium Lyngbya arboricola. J Appl Phycol 19:441–449

    Article  CAS  Google Scholar 

  • Vadiveloo A, Moheimani NR, Cosgrove JJ, Bahri PA, Parlevliet D (2015) Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Res 8:121–127

    Article  Google Scholar 

  • Vadiveloo A, Moheimani NR, Kosterrink NR, Cosgrove JJ, Parlevliet D, Gonzalez-Garcia C, Lubian LM (2016) Photosynthetic performance of two Nannochloropsis spp under different filtered light spectra. Algal Res 19:168–177

    Article  Google Scholar 

  • Velu V, Narayanaswamy M, Balan KS (2015) Enhancing the phycobilin pigment synthesis in Calothrix elenkinii through optimization of light conditions. Int J Sci Nature 6:88–91

    Google Scholar 

  • Venugopal V, Prasanna R, Sood A, Jaiswal P, Kaushik BD (2006) Stimulation of pigment accumulation in Anabaena azollae strain: effect of light intensity and sugars. Folia Microbiol 51:50–56

    Article  CAS  Google Scholar 

  • Vijaya V, Anand N (2009) Blue light enhance the pigment synthesis in cyanobacterium Anabaena ambigua Rao (Nostocales). J Agri Biol Sci 4:36–43

    Google Scholar 

  • Viskari JP, Coyler CL (2002) Separation and quantification of phycobiliproteins using phytic acid in capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr 972:269–276

    Article  CAS  Google Scholar 

  • Xia D, Liu B, Xin W, Liu T, Sun J, Liu N, Qin S, Du Z (2016) Protective effects of C-phycocyanin on alcohol-induced subacute liver injury in mice. J Appl Phycol 28:765–772

    Article  CAS  Google Scholar 

  • Zhang SP, Zhao ZQ, Jiang LJ (2000) Photosensitized formation of singlet oxygen by phycobiliproteins in natural aqueous solutions. J Free Radical Res 33:489–496

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Head, Department of Botany, Punjabi University, Patiala and Coordinator, DRS SAP-II of UGC and FIST of DST, New Delhi for infrastructure and laboratory facilities. Financial assistance received from Department of Science and Technology, New Delhi under WOS-A scheme, Project no. SR/WOS-A/LS-17/2013 to Shveta Kaushal is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushal, S., Singh, Y., Khattar, J.I.S. et al. Phycobiliprotein production by a novel cold desert cyanobacterium Nodularia sphaerocarpa PUPCCC 420.1. J Appl Phycol 29, 1819–1827 (2017). https://doi.org/10.1007/s10811-017-1093-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1093-7

Keywords

Navigation