Skip to main content
Log in

Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Hydrogen gas (H2) has recently been recognized as an important plant bio-regulator, inducing tolerance to several abiotic stresses. However, any role for H2 in amelioration of high-temperature-induced stress remains largely unknown. We investigated the mechanism of hydrogen-rich water (HRW)-mediated enhancement of heat-tolerance in cucumber seedlings exposed to high-temperature stress. The 3 weeks seedlings were pretreated with 50 or 100% HRW for 7 days, the effects on photosynthesis, chlorophyll content, chlorophyll fluorescence parameters, electrolyte leakage, lipid peroxidation, and antioxidant activity were examined when cucumber seedlings subjected for 3 days to heat stress treatment. With respect to samples treat with high temperature stress alone, HRW pretreatment remarkably alleviated stress-induced effects on the above parameters. Furthermore, after 3 days of treatment, HRW pretreatment also significantly increased the activities of antioxidative enzymes, promoted high-level accumulation of osmoprotectants, and upregulated HSP70 expression in cucumber leaves. All of these data suggest that pretreatment with exogenous HRW partially alleviated the detrimental effects of high-temperature stress on the growth of cucumber seedlings by improving the photosynthetic capacity, increasing the antioxidant response, and promoting the accumulation of HSP70 and osmolytes. Therefore, HRW pretreatment may improve cucumber seedlings heat-tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

CAT:

Catalase

Chl:

Chlorophyll

Ci:

Intercellular CO2 concentration

D:

The fraction of absorbed light energy dissipated through non-photochemical quenching

E:

The fraction of excess absorbed light energy

ETR:

Electron transport rate

Fv/Fm:

Maximal quantum efficiency of Photosystem II

Fv′/Fm′:

The excitation capture efficiency of open centers

Gm:

Mesophyll conductance

Gs:

Stomatal conductance

GSH:

Glutathione

H2O2 :

Hydrogen peroxide

HRW:

Hydrogen-rich water

HSPs:

Heat shock proteins

HT:

High temperature

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

P:

The fraction of absorbed light energy utilized in Photosystem II photochemistry

Pn:

Net photosynthetic rate

POD:

Peroxidase

PPFD:

Photosynthetic photon flux density

PSII:

Photosystem II

qP:

Photochemical quenching

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Tr:

Transpiration rate

WUE:

Water use efficiency

ΦPSII:

Quantum efficiency of Photosystem II

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Anastasis C, Panagiota F, George AM, Vasileios F (2013) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14(1):42

    Google Scholar 

  • Andre CM, Yvan L, Daniele E (2010) Dietary antioxidants and oxidative stress from a human and plant perspective: a review. Curr Nutr Food Sci 6:2–12

    Article  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plant 48(1):81–86

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Asthir B, Koundal A, Bains NS (2012) Putrescine modulates antioxidant defense response in wheat under high temperature stress. Biol Plant 56(4):757–761

    Article  CAS  Google Scholar 

  • Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol 152(3):1471–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S (2012) Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J Plant Growth Regul 32(1):216–232

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15(6):330–336

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44(267):1627–1629

  • Chen M, Cui WT, Zhu KK, Xie YJ, Zhang CH, Shen WB (2014) Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production. J Hazard Mat 267:40–47

    Article  CAS  Google Scholar 

  • Christensen HT, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11(6):1187–1194

    Article  Google Scholar 

  • Cui WT, Gao CY, Fang P, Lin GQ, Shen WB (2013) Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water. J Hazard Mat 260:715–724

    Article  CAS  Google Scholar 

  • Cui WT, Fang P, Zhu K (2014) Hydrogen-rich water confers plant tolerance to mercury toxicity in alfalfa seedlings. Ecotoxicol Environ Saf 105(105):103–111

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Iii WWA, Barker DH (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98(2):253–264

  • Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U (2009) Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defense system. J Agron Crop Sci 195(3):213–224

    Article  CAS  Google Scholar 

  • Dong Z, Wu L, Kettlewell B, Caldwell CD, Layzell DB (2003) Hydrogen fertilization of soils-is this a benefit of legumes in rotation. Plant Cell Environ 26:1875–1879

    Article  CAS  Google Scholar 

  • Garbero M, Pedranzani H, Zirulnik F, Molina A, Pérez-Chaca MV, Vigliocco A, Abdala G (2011) Short-term cold stress in two cultivars of Digitaria eriantha: effects on stress-related hormones and antioxidant defense system. Acta Physiol Plant 33:497–507

    Article  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59(2):309–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding L, Dong Z (2010) Hydrogen production by nitrogenase as a potential crop rotation benefit. Environ Chem Lett 8(2):101–121

    Article  CAS  Google Scholar 

  • González L, González-Vilar M (2003) Determination of relative water content and electrolytic leakage. In: Roger MJR (ed) Handbook of plant ecophysiology techniques. Springer, Dordrecht, pp 207–212

    Chapter  Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35(6):1050–1064

    Article  PubMed  Google Scholar 

  • Guo FX, Zhang MX, Chen Y, Zhang WH, Xu SJ, Wang JH, An LZ (2006) Relation of several antioxidant enzymes to rapid freezing resistance in suspension cultured cells from alpine Chorispora bungeana. Cryobiology 52(2):241–250

    Article  CAS  PubMed  Google Scholar 

  • Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber APM (2013) Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol (Stuttg) 15:639–647

    Article  CAS  Google Scholar 

  • Hu H, Li P, Wang YN, Gu RX (2014) Hydrogen-rich water delays postharvest ripening andsenescence of kiwifruit. Food Chem 156(11):100–109

    Article  CAS  PubMed  Google Scholar 

  • Huang CS, Kawamura T, Toyoda Y, Nakao A (2010) Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res 44(9):971–982

    Article  CAS  PubMed  Google Scholar 

  • Huerta C, Freire M, Cardemil L (2013) Expression of hsp70, hsp100 and ubiquitin in Aloe barbadensis Miller under direct heat stress and under temperature acclimation conditions. Plant Cell Rep 32:293–307

    Article  CAS  PubMed  Google Scholar 

  • Jin QJ, Zhu KK, Cui WT, Xie YJ, Han B, Shen WB (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ 36:956–969

    Article  CAS  PubMed  Google Scholar 

  • Jones MM, Turner NC (1978) Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol 61(1):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudson LL, Tibbitts TW, Edwards GE (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol 60:606–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 3:2091–2101

    Article  Google Scholar 

  • Liu CC, Liu YG, Guo K, Fan D, Li G, Zheng YR, Yu LF, Yang R (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ Exp Bot 71:174–183

    Article  CAS  Google Scholar 

  • Liu ZX, Bie ZL, Huang Y, Zhen A, Lei B, Zhang HY (2012) Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosynthetica 50(1):152–160

    Article  CAS  Google Scholar 

  • Lu CM, Zhang JH (2000) Heat-induced multiple effects on PS II in wheat plants. J Plant Physiol 156:259–265

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767(6):414–421

    Article  CAS  PubMed  Google Scholar 

  • Neves JPC, Ferreira LFP, Vaz MM, Gazarini LC (2008) Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in Southern Portugal. Acta Physiol Plant 30(1):91–97

    Article  Google Scholar 

  • Nigro A, Mauro L, Giordano F, Panza S, Iannacone R, Liuzzi GM, Aquila S, De A F, Cellini F, Indiveri C, Panno ML (2016) Recombinant Arabidopsis HSP70 sustains cell survival and metastatic potential of breast cancer cells. Mol Cancer Ther 15(5):1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13:688–694

    Article  CAS  PubMed  Google Scholar 

  • Öquist G, Chow WS (1992) On the relationship between the quantum yield of Photosystem II electron transport, as determined by chlorophyll fluorescence and the quantum yield of CO2 dependent O2 evolution. Photosynth Res 33(1):51–62

    Article  PubMed  Google Scholar 

  • Renwick GM, Giumarro C, Siegel SM (1964) Hydrogen metabolism in higher plants. Plant Physiol 39(3):303–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristic Z, Williams G, Yang G, Martin B, Fullerton S (1996) Dehydration, damage to cellular membranes, and heat-shock proteins in maize hybrids from different climates. J Plant Physiol 149(3):424–432

    Article  CAS  Google Scholar 

  • Sanadze GA (1961) Absorption of molecular hydrogen by green leaves in light. Fiziol Rast 8:555–559

    CAS  Google Scholar 

  • Sharkey TD, Zhang R (2010) High temperature effects on electron and proton circuits of photosynthesis. J Integr Plant Biol 52(8):712–722

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Tsmilli-Michael M (2004) Analysis of the chlorophyll fluorescence transient, vol 19. Kluwer Academic Publishers, Berlin, pp 321–362

    Book  Google Scholar 

  • Su NN, Wu Q, Liu YY, Cai JT, Shen WB, Xia K (2014) Hydrogen-rich water reestablishes ROS homeostasis but exerts differential effects on anthocyanin synthesisin two varieties of radish sprouts under UV-A irradiation. J Agric Food Chem 62(27):6454

    Article  CAS  PubMed  Google Scholar 

  • Suleman P, Redha A, Afzal M, Al-Hasan R (2012) Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius. Acta Physiol Plant 28:1–9

    Google Scholar 

  • Van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25(3):147–150

    Article  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain treated bean plants: protective role of exogenous polyammines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wen XG, Gong HM, Lu CM (2005) Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Sci 168(6):1471–1476

    Article  CAS  Google Scholar 

  • White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59(1):63–72

    Article  CAS  Google Scholar 

  • Wu XX, Yao XF, Chen JL, Zhu ZW, Zhang H, Zha DS (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36:251–261

    Article  CAS  Google Scholar 

  • Xie YJ, Mao Y, Lai DW, Zhang W, Shen WB (2012) H2 enhances Arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion. PLoS One 7(11):e49800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie YJ, Mao W, Zhang W, Wang QY, Shen WB (2014) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165(2):759–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhu SS, Jiang YL, Wang N, Wang R, Shen WB, Yang J (2013) Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 370:47–57

    Article  CAS  Google Scholar 

  • Zeng JQ, Zhang MY, Sun XJ (2013) Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLOS One 8(8):e71038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XN, Zhao XQ, Wang ZQ (2015) Protective effects of hydrogen-rich water on the photosynthetic apparatus of maize seedlings (Zea mays L.) as a result of an increase in antioxidant enzyme activities under high light stress. Plant Growth Regul 77(1):43–56

    Article  CAS  Google Scholar 

  • Zhu JJ, Zhang JL, Liu HC, Cao KF (2009) Photosynthesis, non-photochemical pathways and activities of antioxidant enzymes in a resilient evergreen oak under different climatic conditions from a valley-savanna in Southwest China. Physiol Plant 135:62–72

    Article  CAS  PubMed  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD (2011) Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346:189–199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (J1210056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhao, X., Lei, D. et al. Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves. Plant Growth Regul 83, 69–82 (2017). https://doi.org/10.1007/s10725-017-0284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0284-1

Keywords

Navigation