Skip to main content
Log in

Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA) are well-known signaling molecules that play multifaceted roles in the stress tolerance of plants; however, their interactions during stress alleviation have not been well studied. We investigated the possible regulatory role of NO in H2O2- and SA-induced reduction of oxidative damage in salt-exposed rice seedlings. For this purpose, hydroponically grown 14-day-old seedlings were pretreated with 100 μM H2O2 or 100 μM SA in the presence or absence of 100 μM hemoglobin (Hb, a potent NO scavenger) for 24 h followed by salt stress (200 mM NaCl) for 72 h. Salt stress significantly increased the levels of H2O2, malondialdehyde, and proline whereas H2O2 and SA pretreatment reduced the values of these parameters. H2O2 and SA pretreatment also inhibited salt-induced loss of total chlorophyll and relative water content. Histochemical detection of reactive oxygen species [ROS: superoxide (O ·−2 ) and H2O2] indicated evident oxidative burst in the seedlings stressed with salt alone. Salt stress modulated the non-enzymatic and enzymatic antioxidants differentially; however, H2O2 and SA treatment prior to salt stress enhanced these antioxidants compared with the salt-stressed seedlings alone. H2O2 and SA pretreated salt-stressed seedlings also showed higher induction of the methylglyoxal (MG) detoxification system. Endogenous NO content was elevated following H2O2 and SA pretreatment over the experimental period. Adding Hb reduced the level of NO and subsequently abolished the beneficial effects of H2O2 and SA. Our results, therefore, suggest that NO might be involved in H2O2- and SA-induced reduction of oxidative damage through the upregulation of the antioxidant defense and MG detoxification systems to confer salt tolerance in rice seedlings. The data are of considerable value in elucidating the biochemical mechanisms of salt-stress tolerance and will augment the goal of developing appropriate and efficient methods for crop protection in saline environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez Viveros MF, Inostroza-Blancheteau C, Timmermann T, González M, Arce-Johnson P (2013) Overexpression of Gly I and Gly II genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 40:3281–3290

    Article  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arnon DT (1949) Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ashfaque F, Khan MIR, Khan NA (2014) Exogenously applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Annu Res Rev Biol 4:105–120

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Dutilleul C, Driscoll S, Cornic G, De Paepe R, Foyer CH, Noctor G (2003) Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol 131:264–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elia AC, Galarini R, Taticchi MI, Dorr AJM, Mantilacci L (2003) Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 55:162–167

    Article  CAS  PubMed  Google Scholar 

  • El-Shabrawi H, Kumar B, Kaul T, Reddy MK, Singla-Pareek SL, Sopory SK (2010) Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice. Protoplasma 245:85–96

    Article  CAS  PubMed  Google Scholar 

  • Esim N, Atici O (2014) Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth Regul 72:29–38

    Article  CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Griffiths OW (1980) Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  Google Scholar 

  • Han Y, Yin S, Huang L (2014) Towards plant salinity tolerance-implications from ion transporters and biochemical regulation. Plant Growth Regul. doi:10.1007/s10725-014-9997-6

    Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stochiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2013) Hydrogen Peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.) seedlings. Plant Gene Trait 4:109–123

    Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress induced changes of methylglyoxal level and Glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3:53–64

    CAS  Google Scholar 

  • Hossain MA, Ismail MR, Uddin MK, Islam MZ, Ashrafuzzaman M (2013a) Efficacy of ascorbate–glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Aust J Crop Sci 7:1801–1808

    CAS  Google Scholar 

  • Hossain MA, Mostofa MG, Fujita M (2013b) Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard (Brassica campestris L.) seedlings. Mol Plant Breed 4:50–70

    Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. doi:10.1007/s10725-015-0028-z

    Google Scholar 

  • Kaur C, Ghosh A, Pareek A, Sopory SK, Singla-Pareek SL (2014) Glyoxalases and stress tolerance in plants. Biochem Soc Trans 42:485–490

    Article  CAS  PubMed  Google Scholar 

  • Khan MN, Siddiqui MH, Mohammad F, Naeem M (2012) Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide 27:210–218

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khare T, Kumar V, Kishor PBK (2014) Na+ and Cl− ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma. doi:10.1007/s00709-014-0749-2

    PubMed  Google Scholar 

  • Klessig DF et al (2000) Nitric oxide and salicylic acid signaling in plant defense. PNAS 97:8849–8855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089

    Article  CAS  PubMed  Google Scholar 

  • Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho JY, Lee S, Kim JH, Chung BY (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335

    Article  CAS  PubMed  Google Scholar 

  • Li J-T, Qiu Z-B, Zhang X-W, Wang L-S (2011) Exogenous hydrogen peroxide can enhance tolerance of wheat seedlings to salt stress. Acta Physiol Plant 33:835–842

    Article  CAS  Google Scholar 

  • Lin Y, Liu Z, Shi Q, Wang X, Wei M, Yang F (2012) Exogenous nitric oxide (NO) increased antioxidant capacity of cucumber hypocotyl and radicle under salt stress. Sci Hortic 142:118–127

    Article  CAS  Google Scholar 

  • Liu S, Dong Y, Xu L, Kong J (2014) Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regul 73:67–78

    Article  CAS  Google Scholar 

  • Lopez-Carrion AI, Castellano R, Rosales MA, Ruiz JM, Romero L (2008) Role of nitric oxide under saline stress: implications on proline metabolism. Biol Plant 52:587–591

    Article  CAS  Google Scholar 

  • Mishra P, Bhoomika K, Dubey RS (2013) Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250:3–19

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Seraj ZI, Fujita M (2014a) Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma 251:1373–1386

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Yoshida N, Fujita M (2014b) Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 73:31–44

    Article  CAS  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M (2015) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252:461–475

    Article  CAS  PubMed  Google Scholar 

  • Mustafiz A et al (2014) A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. Plant J 78:951–963

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nazar R, Iqbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol 168:807–815

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:65–176

    Article  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants. doi:10.1093/aobpla/pls014

    PubMed Central  PubMed  Google Scholar 

  • Qiao WH, Li CN, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93

    Article  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Nakamura Y, Mori IC, Murata Y (2009) Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav 4:119–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2008) Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic Res 17:171–180

    Article  CAS  PubMed  Google Scholar 

  • Song F, Goodman RM (2001) Activity of nitric oxide is dependent on, but is particularly required for function of salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Mol Plant-Microbe Int 14:1458–1462

    Article  CAS  Google Scholar 

  • Sun LR, Hao FS, Lu BS, Ma LY (2010) AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signal Behav 5:1022–1024

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    Article  CAS  PubMed  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • Upadhyaya CP, Venkatesh J, Gururani MA, Asnin L, Sharma K, Ajappala H, Park SW (2011) Transgenic potato overproducing L-ascorbic acid resisted an increase in methylglyoxal under salinity stress via maintaining higher reduced glutathione level and glyoxalase enzyme activity. Biotechnol Lett 33:2297–2307

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2007) Plant responses to drought, salinity and extreme temperatures towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  Google Scholar 

  • Xu Q, Xu X, Zhao Y, Jiao K, Herbert SJ, Hao L (2008) Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul 54:249–259

    Article  CAS  Google Scholar 

  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005) Transgenic tobacco plants overexpressing glyoxalase enzymes resist an increase in methylglyoxal and maintain higher reduced glutathione levels under salinity stress. Fed Eur Biochem Soc Lett 579:6265–6271

    Article  CAS  Google Scholar 

  • Younis ME, Hasaneen MNA, Kazamel AMS (2010) Exogenously applied ascorbic acid ameliorates detrimental effects of NaCl and mannitol stress in Vicia faba seedlings. Protoplasma 239:39–48

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007) Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol 175:36–50

    Article  CAS  PubMed  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228

    Article  CAS  PubMed  Google Scholar 

  • Zottini M, Costa A, Michele RD, Ruzzene M, Carimi F, Schiavo FL (2007) Salicylic acid activates nitric oxide synthesis in Arabidopsis. J Exp Bot 58:1397–1405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. G. Mostofa gratefully acknowledges the funding from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masayuki Fujita or Lam-Son Phan Tran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostofa, M.G., Fujita, M. & Tran, LS.P. Nitric oxide mediates hydrogen peroxide- and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul 77, 265–277 (2015). https://doi.org/10.1007/s10725-015-0061-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0061-y

Keywords

Navigation