Skip to main content

Advertisement

Log in

Effect of urea fertilization on growth of broad bean (Vicia faba L.) under various nickel (Ni) levels with or without acetic acid addition, using 15N-labeled fertilizer

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Although nickel (Ni) has direct relationship with nitrogen metabolism of plants, the high dose of Ni fertilizer in broad bean plants may affect the nitrogen use efficiency (NUE), impair plant development and even cause Ni pollution in soil. Thus, a pot experiment was set up to study the effect of urea fertilization on N-uptake, root and shoots’ Ni content as well as growth of broad bean plants under different levels of Ni, using 15N tracer technique. 15N-labeled urea (5% 15N atom excess) was added at three doses (0, 30 and 60 mg N kg−1 soil). Nickel sulfate (NiSO4) was also applied at three levels (0, 50 and 100 mg Ni kg−1 soil). The experiment was laid out with or without acetic acid in randomized complete block design in three replicates. Treatment with the addition of 60 mg N + 50 mg Ni showed the highest values in dry weights of root and shoots, N-uptake by shoots, nitrogen derived from fertilizer (Ndff %) and NUE % by shoots in both with or without acetic acid solution. Higher rate of Ni addition can decrease shoot and root biomass by inhibiting the ability of the plant to uptake the nitrogen efficiently. However, addition of acetic acid solution induced the improvement of NUE % and Ndff % by shoot and root of broad bean plants. This study provides insight into how to improve plant yield without damaging the soil health and will be helpful to create a better world with sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd Allah, E. M. M. (2008). Partial diallel analysis of some economic characters among six parents of broad bean (Visia faba L.). Egyptian Journal of Applied Science, 23(11), 225–234.

    Google Scholar 

  • Ahmad, M. S. A., Hussain, M., Ashraf, M., Ahmad, R., & Ashraf, M. Y. (2009). Effect of nickel on seed germinability of some elite sunflower (Helianthus annuus L.) cultivars. Pakistan Journal of Botany, 41, 1871–1882.

    CAS  Google Scholar 

  • Allison, F. E. (1973). Soil organic matter and its role in crop production (1st ed., Vol. 3). Amsterdam: Elsevier Science.

    Google Scholar 

  • Bekkari, B. N., & Pizelle, G. (1992). In vivo urease activity in Robinia Pseudoacacia. Plant Physiology and Biochemistry, 30(2), 187–192.

    Google Scholar 

  • Bermudez, G. M. A., Jasan, R., Plá, R., & Pignata, M. L. (2012). Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. Journal of Hazardous Materials, 213–214, 447–456. https://doi.org/10.1016/j.jhazmat.2012.02.023.

    Article  CAS  Google Scholar 

  • Bhalerao, S., Sharma, A., & Poojari, A. (2015). Toxicity of nickel in plants. International Journal of Pure & Applied Bioscience, 3, 345–355.

    Google Scholar 

  • Black, C. A. (1965). Methods of soil analysis: part I. Madison, WI: American Society of Agronomy.

    Book  Google Scholar 

  • Bremner, J. M., & Mulvaney, C. S. (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties. In A. L. Page, et al. (Eds.), Nitrogen-total (pp. 595–624). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: Recent advances and future prospects. CLEAN – Soil, Air, Water, 37, 304–313. https://doi.org/10.1002/clen.200800199.

    Article  CAS  Google Scholar 

  • Garrett, R. (2000). Natural sources of metals to the environment. Human and Ecological Risk Assessment, 6, 945–962. https://doi.org/10.1080/10807030091124383.

    Article  CAS  Google Scholar 

  • Gerendas, J., & Sattelmacher, B. (1999). Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH4NO3 or urea as N source. Annals of Botany, 83(1), 65–71. https://doi.org/10.1006/anbo.1998.0789.

    Article  CAS  Google Scholar 

  • Gerendas, J., Zhu, Z., & Sattelmacher, B. (1998). Influence of N and Ni supply on nitrogen metabolism and urease activity in rice (Oryza sativa L.). Journal of Experimental Botany. https://doi.org/10.1093/jexbot/49.326.1545.

    Article  Google Scholar 

  • Gratão, P. L., Prasad, M. N. V., Cardoso, P. F., Lea, P. J., & Azevedo, R. A. (2005). Phytoremediation: green technology for the clean up of toxic metals in the environment. Brazilian Journal of Plant Physiology, 17, 53–64.

    Article  Google Scholar 

  • Guo, Y., & Marschner, H. (1995). Uptake, distribution, and binding of cadmium and nickel in different plant species. Journal of Plant Nutrition, 18(12), 2691–2706. https://doi.org/10.1080/01904169509365094.

    Article  CAS  Google Scholar 

  • Gzar, H., Abdul-Hameed, A., & Yahya, A. (2014). Extraction of lead, cadmium and nickel from contaminated soil using acetic acid. Open Journal of Soil Science, 04, 207–214. https://doi.org/10.4236/ojss.2014.46023.

    Article  CAS  Google Scholar 

  • Harasim, P., & Filipek, T. (2015). Nickel in the environment. Journal of Elementology, 20, 525–534. https://doi.org/10.5601/jelem.2014.19.3.651.

    Article  Google Scholar 

  • Helal, F. A., Zeiny, O. A. H. E., & Saaed, S. A. E. (2005). Performance of faba bean (Visia faba L.) cultivars and their response to spray with some foliar fertilizers and yeast. Egyptian Journal of Applied Sciences, 20(8B), 555–573.

    Google Scholar 

  • Hussain, M., Ali, S., Azam, A., Hina, S., Farooq, M. A., Ali, D. B., et al. (2013). Morphological, physiological and biochemical responses of plants to nickel stress: A review. African Journal of Agricultural Research, 8, 1596–1602. https://doi.org/10.5897/AJAR12.407.

    Article  CAS  Google Scholar 

  • Kaveriammal, S., & Subramani, A. (2013) Toxic effect of Nickel Chloride (NiCl2) on the growth behavior and biochemical constituent of groundnut seedling (Arachis hypogeaea L.). International Journal of Research in Botany, 3, 48–52.

    Google Scholar 

  • Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhaes, J. V. (2015). Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66, 571–598. https://doi.org/10.1146/annurev-arplant-043014-114822.

    Article  CAS  Google Scholar 

  • Krogmeier, M. J., McCarty, G. W., & Bremner, J. M. (1989). Phytotoxicity of foliar-applied urea. Proceedings of the National Academy of Sciences of the United States of America, 86(21), 8189–8191. https://doi.org/10.1073/pnas.86.21.8189.

    Article  CAS  Google Scholar 

  • Kutman, B. Y., Kutman, U. B., & Cakmak, I. (2014). Effects of seed nickel reserves or externally supplied nickel on the growth, nitrogen metabolites and nitrogen use efficiency of urea- or nitrate-fed soybean. Plant and Soil, 376(1), 261–276. https://doi.org/10.1007/s11104-013-1983-7.

    Article  CAS  Google Scholar 

  • Latif, H. (2010). The influence of nickel sulphate on some physiological aspects of two cultivars of Raphanus sativus L. Archives of Biological Sciences. https://doi.org/10.2298/ABS1003683L.

    Article  Google Scholar 

  • Lavres, J., Castro Franco, G., & de Sousa Câmara, G. M. (2016). Soybean seed treatment with nickel improves biological nitrogen fixation and urease activity. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2016.00037.

    Article  Google Scholar 

  • MacCarthy, P. (2001). The principles of humic substances: An introduction to the first principle. In E. A. Ghabbour & G. Davies (Eds.), Humic substances: Structures, models and functions (pp. 19–30). Cambridge, UK: Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Mann, M. J. (1999). Full-scale and pilot-scale soil washing. Journal of Hazardous Materials, 66(1), 119–136. https://doi.org/10.1016/S0304-3894(98)00207-6.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.

    Google Scholar 

  • Meychik, N. R., Nikolaeva, Y. I., Komarynets, O. V., & Ermakov, I. P. (2011). Barrier function of the cell wall during uptake of nickel ions. Russian Journal of Plant Physiology, 58(3), 409–414. https://doi.org/10.1134/S1021443711030137.

    Article  CAS  Google Scholar 

  • Moutsatsou, A., Gregou, M., Matsas, D., & Protonotarios, V. (2006). Washing as a remediation technology applicable in soils heavily polluted by mining–metallurgical activities. Chemosphere, 63(10), 1632–1640. https://doi.org/10.1016/j.chemosphere.2005.10.015.

    Article  CAS  Google Scholar 

  • Kozlov, M. V. (2005). Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper-nickel smelter: natural selection or phenotypic acclimation? Chemosphere, 59(2), 189–197. https://doi.org/10.1016/j.chemosphere.2004.11.010.

    Article  CAS  Google Scholar 

  • Page, A. L., Miller, R. H., & Kenney, D. R. (1982). Methods of soil analysis, part 1. Madison, WI: ASA, SSSA.

    Google Scholar 

  • Parker, D. R., Pedler, J. F., Ahnstrom, Z. A., & Resketo, M. (2001). Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: Experimental evidence with copper and zinc. Environmental Toxicology and Chemistry, 20(4), 899–906. https://doi.org/10.1897/1551-5028(2001)020%3c0899:rtfiam%3e2.0.co;2.

    Article  CAS  Google Scholar 

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66(1–2), 151–210. https://doi.org/10.1016/s0304-3894(99)00010-2.

    Article  CAS  Google Scholar 

  • Piccolo, A., & Mbagwu, J. S. C. (1990). Effects of different organic waste amendments on soil microaggregates stability and molecular sizes of humic substances. Plant and Soil, 123(1), 27–37. https://doi.org/10.1007/BF00009923.

    Article  CAS  Google Scholar 

  • Poozesh, V., & Tagharobian, M. (2014). The effect of different concentrations of nickel on germination and growth of coriander (Coriandrum sativum) and milk thistle (Silybum marianum) seedlings. Indian Journal of Fundamental and Applied Life Science, 4, 280–287.

    Google Scholar 

  • Reinhold-Hurek, B., & Hurek, T. (2007). Endophytic associations of Azoarcus spp. In C. Elmerich & N. W. E. In (Eds.), Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Nitrogen fixation: Origins, applications, and research progress (Vol. 5). Dordrecht: Springer.

    Google Scholar 

  • Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2), 257–277. https://doi.org/10.1134/S1021443706020178.

    Article  CAS  Google Scholar 

  • Sharma, A., & Dhiman, A. (2013). Nickel and cadmium toxicity in plants. Journal of Pharmaceutical and Scientific Innovation, 2, 20–24. https://doi.org/10.7897/2277-4572.02213.

    Article  CAS  Google Scholar 

  • Singh, R. P., Chandel, S. K. S., Yadav, P. K., & Singh, S. N. (2011). Effect of Ni on nitrogen uptake and yield of wheat (Triticum aestivum). International Journal of Science and Research, 2(4), 61–63.

    CAS  Google Scholar 

  • Singh, B., Dang, Y. P., & Mehta, S. C., S. C. (1990). Influence of nitrogen on the behaviour of nickel in wheat. Plant and Soil, 127(2), 213–218. https://doi.org/10.1007/BF00014428.

    Article  CAS  Google Scholar 

  • Sreekanth, T., Nagajyothi, P., Lee, K., & Prasad, T. N. V. K. V. (2013). Occurrence, physiological responses and toxicity of nickel in plants. International Journal of Environmental Science and Technology, 10, 1129–1140. https://doi.org/10.1007/s13762-013-0245-9.

    Article  CAS  Google Scholar 

  • Witte, C. P., Tiller, S. A., Taylor, M. A., & Davies, H. V. (2002). Leaf urea metabolism in potato. Urease activity profile and patterns of recovery and distribution of (15)N after foliar urea application in wild-type and urease-antisense transgenics. Plant Physiology, 128(3), 1129–1136. https://doi.org/10.1104/pp.010506.

    Article  CAS  Google Scholar 

  • Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science and Technology, 7(3), 485–496. https://doi.org/10.1007/BF03326158.

    Article  CAS  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Hayat, S., & Ahmad, A. (2011). Nickel: An overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86, 1–17. https://doi.org/10.1007/s00128-010-0171-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Mar Lynn.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhran, M., Moursy, A., Lynn, T.M. et al. Effect of urea fertilization on growth of broad bean (Vicia faba L.) under various nickel (Ni) levels with or without acetic acid addition, using 15N-labeled fertilizer. Environ Geochem Health 43, 2423–2431 (2021). https://doi.org/10.1007/s10653-020-00707-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00707-y

Keywords

Navigation