Skip to main content

Advertisement

Log in

Effects of seed nickel reserves or externally supplied nickel on the growth, nitrogen metabolites and nitrogen use efficiency of urea- or nitrate-fed soybean

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Nickel (Ni) has a critical role in the urea metabolism of plants. This study investigated the impact of seed Ni content along with external Ni supply on the growth, various nitrogen (N) metabolites and N use efficiency (NUE) of soybean plants.

Methods

Soybean plants raised from Ni-poor or Ni-rich seeds were grown in nutrient solution with or without external Ni supply and fed with either urea or nitrate as the sole N source. The changes in growth, leaf chlorophyll levels, Ni and N concentrations of different plant parts, tissue accumulation of various N metabolites and N uptake of soybean as well as NUE and its components were examined.

Results

Nickel starvation reduced the shoot biomass of urea-fed plants by 25 % and the leaf chlorophyll levels by up to 35 %, but nitrate-fed plants were unaffected. Visual toxicity symptoms were not observed in urea-fed plants. Under urea supply, Ni-deficient plants had lower levels of total N, protein and free amino acids in various organs. Root uptake of urea was severely depressed in Ni-deprived plants. Availability of Ni did not have any effect on the NUE of nitrate-fed plants, whereas its deficiency reduced the NUE of urea-fed plants by 30 %. The growth and N nutritional status of urea-fed soybean were significantly improved by high seed Ni reserves as well as external Ni supply.

Conclusion

Adequate Ni supply is required for maximizing the growth, root uptake of urea and NUE of urea-fed plants. Seed Ni reserves contribute significantly to the Ni and thus N nutritional status of soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arkoun M, Jannin L, Laine P, Etienne P, Masclaux-Daubresse C, Citerne S, Garnica M, Garnia-Mina JM, Yvin JC, Ourry A (2013) A physiological and molecular study of the effects of nickel deficiency and phenylphosphorodiamidate (PDD) application on urea metabolism in oilseed rape (Brassica napus L.). Plant Soil 362:79–92

    Article  CAS  Google Scholar 

  • Bai C, Reilly CC, Wood BW (2006) Nickel deficiency disroupts metabolism of ureides, amino acids and organic acids of young pecan foliage. Plant Physiol 140:433–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley DP, Morgan MA, O’Toole P (1989) Uptake and apparent utilization of urea and ammonium nitrate in wheat seedlings. Fertil Res 20:41–49

    Article  CAS  Google Scholar 

  • Brown PH, Welch RM, Cary EE (1987) Nickel: a micronutrient essential for higher plants. Plant Physiol 85:801–803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown PH, Welch RM, Madison JT (1990) Effect of nickel deficiency on soluble anion, amino acid and nitrogen levels in barley. Plant Soil 125:19–27

    Article  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofotritication? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant 6:71–80

    Article  CAS  Google Scholar 

  • Chardon F, Barthelemy J, Daniel-Vedele F, Masclaux-Daubresse C (2010) Natural variation of nitrate uptake and nitrogen use efficiency in Arabidopsis thaliana cultivated with limiting and ample nitrogen supply. J Exp Bot 61:2293–2302

    Article  CAS  PubMed  Google Scholar 

  • Dawar K, Zaman M, Rowarth JS, Blennerhassett J, Turnbull M (2011) Urease inhibitor reduced N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric Ecosyst Environ 144:41–50

    Article  CAS  Google Scholar 

  • Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel. J Am Chem Soc 97:4131–4133

    Article  CAS  PubMed  Google Scholar 

  • Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65Zn) in wheat. New Phytol 189(2):438–448

    Article  CAS  PubMed  Google Scholar 

  • Gerendas J, Sattelmacher B (1997) Significance of Ni supply for growth, urease activity and the concentrations of urea, amino acids and mineral nutrients of urea-grown plants. Plant Soil 190:153–162

    Article  CAS  Google Scholar 

  • Gerendas J, Sattelmacher B (1999) Influence of Ni supply on growth and nitrogen metabolism of Brassica napus L. grown with NH4NO3 or urea as N source. Ann Bot 83:65–71

    Article  CAS  Google Scholar 

  • Gerendas J, Zhu Z, Sattelmacher B (1998) Influence of N and Ni supply on nitrogen metabolism and urease activity in rice (Oryza sativa L.). J Exp Bot 49(326):1545–1554

    Article  CAS  Google Scholar 

  • Gerendas J, Polacco JC, Freyermuth SK, Sattelmacher B (1999) Significance of nickel for plant growth and metabolism. J Plant Nutr Soil Sci 162:241–256

    Article  CAS  Google Scholar 

  • Gheibi MN, Malakouti MJ, Kholdebarin B, Ghanati F, Teimouri S, Sayadi R (2009) Significance of nickel supply for growth and chlorophyll content of wheat supplied with urea or ammonium nitrate. J Plant Nutr 32(9):1440–1450

    Article  CAS  Google Scholar 

  • Goldraij A, Polacco JC (1999) Arginase in inoperative in developing soybean embryos. Plant Physiol 119:297–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldraij A, Polacco JC (2000) Arginine degredation by arginase in mitochondria of soybean seedling cotyledons. Planta 210:652–658

    Article  CAS  PubMed  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  PubMed  Google Scholar 

  • Grewal HS, Graham RD (1997) Seed zinc content influences early vegetative growth and zinc uptake in oilseed rape (Brassica napus and Brassica juncea) genotypes on zinc-deficient soil. Plant Soil 192:191–197

    Article  CAS  Google Scholar 

  • Holland MA, Griffin JD, Meyer-Bothling LE, Polacco JC (1987) Developmental genetics of the soybean urease isozymes. Dev Genet 8:375–387

    Article  CAS  Google Scholar 

  • Hu Y, Wang NS, Hu XJ, Lin XY, Feng Y, Jin CW (2013) Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants. Plant Soil. doi:10.1007/s11104-013-1682-4

    Google Scholar 

  • Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Maier RJ (1990) Transcriptional regulation of hydrogenase synthesis by nickel in Bradyrhizobium japonicum. J Biol Chem 265(31):16729–16732

    Google Scholar 

  • Kojima S, Bohner A, von Wiren N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212:83–91

    Article  CAS  PubMed  Google Scholar 

  • Krogmeier MJ, McCarty GW, Shogren DR, Bremner JM (1991) Effect of nickel deficiency in soybeans on the phytotoxicity of foliar-applied urea. Plant Soil 135:283–286

    Article  CAS  Google Scholar 

  • Kumar V, Wagenet RJ (1984) Urease activity and kinetics of urea transformation in soils. Soil Sci 137:263–269

    Article  CAS  Google Scholar 

  • Kutman BY, Kutman UB, Cakmak I (2013) Nickel-enriched seed and externally supplied Ni improve growth and alleviate foliar urea damage in soybean. Plant Soil 363:61–75

    Article  CAS  Google Scholar 

  • Kyllingsbæk A (1975) Extraction and colorimetric determination of urea in plants. Acta Agric Scand 25:109–112

    Article  Google Scholar 

  • Lin MH, Gresshoff PM, Ferguson BJ (2012) Systemic regulation of soybean nodulation by acidic growth conditions. Plant Physiol 160:2028–2039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu LH, Ludewig U, Frommer WB, von Wiren N (2003) AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15:790–800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longnecker N, Crosbie J, Davies F, Robson A (1996) Low seed manganese concentration and decreased emergence of Lupinus angustifolius. Crop Sci 36:355–361

    Article  CAS  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Elsevier

    Google Scholar 

  • Merigout P, Gaudon V, Quillere I, Briand X, Daniel-Vedele F (2008a) Urea use efficiency of hydroponically grown maize and wheat. J Plant Nutr 31:427–443

    Article  CAS  Google Scholar 

  • Merigout P, Lelandais M, Bitton F, Renou JP, Briand X, Meyer C, Daniel-Vedele F (2008b) Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol 147:1225–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Micallef BJ, Shelp BJ (1989) Arginine metabolism in developing soybean cotyledons. 1. Relationship to nitrogen nutrition. Plant Physiol 90:624–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  • Neumann PM, Chamel A (1986) Comparative phloem mobility of nickel in nonsenescent plants. Plant Physiol 81:689–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicoulaud BAL, Bloom AJ (1998) Nickel supplements improve growht when foliar urea is the sole nitrogen source for tomato. J Am Soc Hortic Sci 123(4):556–559

    CAS  Google Scholar 

  • Osborne SL, Riedell WE (2006) Starter nitrogen fertilizer impact on soybean yield and quality in the northern Great Plains. Agron J 98:1569–1574

    Article  CAS  Google Scholar 

  • Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434

    Article  CAS  PubMed  Google Scholar 

  • Polacco J, Mazzafera P, Tezotto T (2013) Opinion – Nickel and urease in plants: still many knowledge gaps. Plant Sci 199–200:79–90

    Article  PubMed  Google Scholar 

  • Rahayu YS, Walch-Liu P, Neumann G, Römheld V, von Wiren N, Bangerth F (2005) Root-derived cytokinins as long-distance signals for NO3–induced stimulation of leaf growth. J Exp Bot 56:1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Rawluk CDL, Grant CA, Racz GJ (2001) Ammonia volatilization from soils fertilized with urea and varying rates of urease inhibitor NBPT. Can J Soil Sci 81:239–246

    Article  CAS  Google Scholar 

  • Rerkasem B, Bell RW, Lodkaew S, Loneragan JF (1997) Relationship of seed boron concentration to germination and growth of soybean (Glycine max). Nutr Cycl Agroecosyst 48:217–223

    Article  CAS  Google Scholar 

  • Rhine ED, Sims GK, Mulvaney RL, Pratt EJ (1998) Improving the berhelot reaction for determining ammonium in soil extracts and water. Soil Sci Soc Am J 62:473–480

    Article  CAS  Google Scholar 

  • Sadasivam S, Manickam A (2005) Biochemical methods, 2nd edn. New age international publishers, New Delhi, pp 40–42

    Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    Article  CAS  PubMed  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13

    Article  Google Scholar 

  • Stults LW, O’Hara EB, Maier RJ (1984) Nickel is a component of hydrogenase in Rhizobium japonicum. J Bacteriol 159(1):153–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tan XW, Ikeda H, Oda M (2000) Effects of nickel concentration in the nutrient solution ın the nitrogen assimilation and growth of tomato seedlings in hydroponic culture supplied with urea or nitrate as the sole nitrogen source. Sci Hortic Amst 84:265–273

    Article  CAS  Google Scholar 

  • Walker CD, Graham RD, Madison JD, Cary EE, Welch RM (1985) Effects of Ni deficiency on some nitrogen metabolites in cowpeas (Vigna unguiculata L. Walp). Plant Physiol 79:474–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watson CJ, Miller H (1996) Short-term effects of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide on perennial ryegrass. Plant Soil 184:33–45

    Article  CAS  Google Scholar 

  • Welch RM (1999) Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. The Haworth Press, New York, pp 205–226

    Google Scholar 

  • Witte CP (2011) Urea metabolism in plants. Plant Sci 180:431–438

    Article  CAS  PubMed  Google Scholar 

  • Wood BW, Reilly CC, Nyczepir AP (2004) Mouse-ear of pecan: a nickel deficiency. HortSci 39(6):1238–1242

    CAS  Google Scholar 

  • Zantua MI, Dumenil LC, Bremner JM (1977) Relationships between soil urease activity and other urease activities. Soil Sci Soc Am J 41:350–352

    Article  CAS  Google Scholar 

  • Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Cakmak.

Additional information

Responsible Editor: Fangjie Zhao.

Bahar Yildiz Kutman and Umit Baris Kutman are equally contributing authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutman, B.Y., Kutman, U.B. & Cakmak, I. Effects of seed nickel reserves or externally supplied nickel on the growth, nitrogen metabolites and nitrogen use efficiency of urea- or nitrate-fed soybean. Plant Soil 376, 261–276 (2014). https://doi.org/10.1007/s11104-013-1983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1983-7

Keywords

Navigation