Skip to main content
Log in

Editable and bidirectional shape memory chitin hydrogels based on physical/chemical crosslinking

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Advances in soft robotics have enabled rapid progress in shape memory hydrogels, including unidirectional, bidirectional and multidirectional shape memory hydrogels. However, shape memory hydrogels with editable feature have hardly been reported. Here, chitin based bilayer hydrogels were prepared based on alkali/urea aqueous system. Due to the different swelling properties of the two layers, namely physical crosslinking layer and chemical crosslinking layer, the hydrogels can bend toward opposite direction in water and ethanol, showing a bidirectional shape memory behavior. Meanwhile, this bidirectional shape memory hydrogels can be programmed to different shapes with external force after immerging in alkali solution as a result of the hydrogen bond breakage and reformation via hydroxyl ion, displaying an editable feature. We believe that the editable and bidirectional shape memory chitin bilayer hydrogels have great potential in soft robotics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Behl M, Kratz K, Zotzmann J, Nöchel U, Lendlein A (2013) Reversible bidirectional shape-memory polymers. Adv Mater 25(32):4466–4469

    Article  CAS  Google Scholar 

  • Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42(8):3569–3580

    Article  CAS  Google Scholar 

  • Chen S, Hu J, Zhuo H, Zhu Y (2008) Two-way shape memory effect in polymer laminates. Mater Lett 62(25):4088–4090

    Article  CAS  Google Scholar 

  • Chen X, Yang H, Zhong Z, Yan N (2017) Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chem 19(12):2783–2792

    Article  CAS  Google Scholar 

  • Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48(8):2706–2714

    Article  CAS  Google Scholar 

  • Fan LF, Rong MZ, Zhang MQ, Chen XD (2018) Dynamic reversible bonds enable external stress-free two-way shape memory effect of a polymer network and the interrelated intrinsic self-healability of wider crack and recyclability. J Mater Chem A 6(33):16053–16063

    Article  CAS  Google Scholar 

  • Guo W, Lu C-H, Orbach R, Wang F, Qi X-J, Cecconello A, Seliktar D, Willner I (2015) Ph-stimulated DNA hydrogels exhibiting shape-memory properties. Adv Mater 27(1):73–78

    Article  CAS  Google Scholar 

  • He M, Wang X, Wang Z, Chen L, Lu Y, Zhang X, Li M, Liu Z, Zhang Y, Xia H, Zhang L (2017) Biocompatible and biodegradable bioplastics constructed from chitin via a “green” pathway for bone repair. ACS Sustain Chem Eng 5(10):9126–9135

    Article  CAS  Google Scholar 

  • Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37(12):1720–1763

    Article  CAS  Google Scholar 

  • Hu X, Zhang D, Sheiko SS (2018) Cooling-triggered shapeshifting hydrogels with multi-shape memory performance. Adv Mater 30(26):1707461

    Article  Google Scholar 

  • Jin B, Song H, Jiang R, Song J, Zhao Q, Xie T (2018) Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Sci Adv 4(1):eaao3865

    Article  Google Scholar 

  • Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296(5573):1673–1676

    Article  Google Scholar 

  • Min B-M, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21):7137–7142

    Article  CAS  Google Scholar 

  • Navarro-Baena I, Kenny JM, Peponi L (2014) Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose 21(6):4231–4246

    Article  CAS  Google Scholar 

  • Nöchel U, Behl M, Balk M, Lendlein A (2016) Thermally-induced triple-shape hydrogels: soft materials enabling complex movements. ACS Appl Mater Interfaces 8(41):28068–28076

    Article  Google Scholar 

  • Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    Article  CAS  Google Scholar 

  • Stroganov V, Al-Hussein M, Sommer J-U, Janke A, Zakharchenko S, Ionov L (2015) Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization. Nano Lett 15(3):1786–1790

    Article  CAS  Google Scholar 

  • Tan Y, Wang D, Xu H, Yang Y, Wang X-L, Tian F, Xu P, An W, Zhao X, Xu S (2018) Rapid recovery hydrogel actuators in air with bionic large-ranged gradient structure. ACS Appl Mater Interfaces 10(46):40125–40131

    Article  CAS  Google Scholar 

  • Wan H, Li X, Zhang L, Li X, Liu P, Jiang Z, Yu Z-Z (2018) Rapidly responsive and flexible chiral nematic cellulose nanocrystal composites as multifunctional rewritable photonic papers with eco-friendly inks. ACS Appl Mater Interfaces 10(6):5918–5925

    Article  CAS  Google Scholar 

  • Wang F, Zhang R, Lin A, Chen R, Wu Q, Chen T, Sun P (2016a) Molecular origin of the shape memory properties of heat-shrink crosslinked polymers as revealed by solid-state nmr. Polymer 107:61–70

    Article  CAS  Google Scholar 

  • Wang W, Liu Y, Leng J (2016b) Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coord Chem Rev 320–321:38–52

    Article  Google Scholar 

  • Wang Y, Cheng Z, Liu Z, Kang H, Liu Y (2018) Cellulose nanofibers/polyurethane shape memory composites with fast water-responsivity. J Mater Chem B 6(11):1668–1677

    Article  CAS  Google Scholar 

  • Weng P, Yin X, Yang S, Han L, Tan Y, Chen N, Chen D, Zhou Y, Wang L, Wang H (2018) Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose 25(2):1425–1436

    Article  CAS  Google Scholar 

  • Xie R, Hu J, Hoffmann O, Zhang Y, Ng F, Qin T, Guo X (2018) Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study. Biochim Biophys Acta (BBA) Gen Subj 1862(4):936–945

    Article  CAS  Google Scholar 

  • Yang L, Paulson AT (2000) Mechanical and water vapour barrier properties of edible gellan films. Food Res Int 33(7):563–570

    Article  CAS  Google Scholar 

  • Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  Google Scholar 

  • Zhang Y, Liao J, Wang T, Sun W, Tong Z (2018) Polyampholyte hydrogels with ph modulated shape memory and spontaneous actuation. Adv Funct Mater 28(18):1707245

    Article  Google Scholar 

  • Zhang Y, Yin X-Y, Zheng M, Moorlag C, Yang J, Wang ZL (2019) 3d printing of thermoreversible polyurethanes with targeted shape memory and precise in situ self-healing properties. J Mater Chem A 7(12):6972–6984

    Article  CAS  Google Scholar 

  • Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  • Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016a) High-strength and high-toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26(34):6279–6287

    Article  CAS  Google Scholar 

  • Zhao Q, Zou W, Luo Y, Xie T (2016b) Shape memory polymer network with thermally distinct elasticity and plasticity. Sci Adv 2(1):e1501297

    Article  Google Scholar 

  • Zhu K, Shi S, Cao Y, Lu A, Hu J, Zhang L (2019a) Robust chitin films with good biocompatibility and breathable properties. Carbohydr Polym 212:361–367

    Article  CAS  Google Scholar 

  • Zhu K, Tu H, Yang P, Qiu C, Zhang D, Lu A, Luo L, Chen F, Liu X, Chen L, Fu Q, Zhang L (2019b) Mechanically strong chitin fibers with nanofibril structure, biocompatibility and biodegradability. Chem Mater 31(6):2078–2087

    Article  CAS  Google Scholar 

  • Zhu K, Wang Y, Lu A, Fu Q, Hu J, Zhang L (2019c) Cellulose/chitosan composite multifilament fibers with two-switch shape memory performance. ACS Sustain Chem Eng 7(7):6981–6990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51373147 and 51673162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlian Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Hu, J. & Zhang, L. Editable and bidirectional shape memory chitin hydrogels based on physical/chemical crosslinking. Cellulose 26, 9085–9094 (2019). https://doi.org/10.1007/s10570-019-02729-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02729-x

Keywords

Navigation