Skip to main content
Log in

Thermodynamic effect on interaction between crystalline phases in size-controlled ACC-bacterial nanocellulose and poly(vinyl alcohol)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aqueous counter collision (ACC) method can provide single bacterial nanocellulose ribbons (ACC-BNC) in a desired width, from a pellicle produced by Gluconacetobacter xylinus. Kose et al. (Biomacromolecules, 12:716–720, 2011) reported that the ACC process transformed the major Iα crystalline phase of the native fiber to a stable Iβ phase, without decreasing the overall crystallinity. The current study investigated the variation of the crystalline phases of ACC-BNC, upon interaction with poly(vinyl alcohol) (PVA). ACC-BNC of desired width was mixed with PVA, without any chemical reaction occurring. This resulted in a homogeneous suspension. The equilibrium melting point of PVA in cast nanocomposite films was investigated, as a probe for evaluating the crystalline surface properties of the ACC-BNC. A decrease in the equilibrium melting point of PVA would have indicated attractive interactions between the PVA and ACC-BNC. However, the nature of the ACC-BNC surface in the presence of PVA depended on the ACC-BNC width. Thicker ACC-BNC acted as a nucleating agent for PVA. Thinner ACC-BNC acted as a diluent of PVA. This tendency was opposite to the case for Iβ-dominant ACC-wood nanocellulose. ACC-BNC acting as a nucleating agent was more efficient than ACC-wood nanocellulose. The results suggested that ACC-BNC surfaces, which probably contained I α phases, had different characteristics to those of Iβ-dominant ACC-wood nanocellulose surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283–285

    Article  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, pp 568–571

    Google Scholar 

  • Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mat Res Part A 76A(2):431–438

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum.2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman JD, Weeks JJ (1962) Melting process and equilibrium melting temperature of polychlorotrifuluoroethylene. J Res Natl Bur Stand Sect A Phys Chem 66(JAN-F):13–28

    Article  Google Scholar 

  • Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21(1):1–30

    Article  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8(6):1973–1978

    Article  CAS  Google Scholar 

  • Imken RL, Paul DR, Barlow JW (1976) Transition behavior of poly(vinylidene fluoride)/poly(ethyl methacrylate) blends. Polym Eng Sci 16(9):593–601

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719

    Article  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chemi Int Ed 50(24):5438–5466

    Article  CAS  Google Scholar 

  • Kondo T, Kasai W (2014) Autonomous bottom-up fabrication of three-dimensional nano/microcellulose honeycomb structures, directed by bacterial nanobuilder. J Biosci Bioeng 118(4):482–487

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Sawatari C, Manley RS, Gray DG (1994) Characterization of hydrogen bonding in cellulose-synthetic polymer blend systems with regioselectively substituted methylcellulose. Macromolecules 27(1):210–215

    Article  CAS  Google Scholar 

  • Kondo T, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. PANS 99(22):14008–14013

    Article  CAS  Google Scholar 

  • Kondo T, Kasai W, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2012) Regulated patterns of bacterial movements based on their secreted cellulose nanofibers interacting interfacially with ordered chitin templates. J Biosci Bioeng 114(1):113–120

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Kose R, Naito H, Kasai W (2014) Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr Polym 112:284–290

    Article  CAS  PubMed  Google Scholar 

  • Kose R, Kondo T (2013) Size effects of cellulose nanofibers for enhancing the crystallization of poly(lactic acid). J Appl Polym Sci 128(2):1200–1205

    Article  CAS  Google Scholar 

  • Kose R, Mitani I, Kasai W, Kondo T (2011) “Nanocellulose” as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromol 12(3):716–720

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Nishio Y, Haratani T, Takahashi T (1989) Cellulose/poly(vinyl alcohol) blends: an estimation of thermodynamic polymer-polymer interaction by melting point depression analysis. Macromolecules 22(5):2547–2549

    Article  CAS  Google Scholar 

  • Sawatari C, Kondo T (1999) Interchain hydrogen bonds in blend films of poly(vinyl alcohol) and its derivatives with poly(ethylene oxide). Macromolecules 32(6):1949–1955

    Article  CAS  Google Scholar 

  • Scott RL (1949) The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: polymer 1—polymer 2—solvent. J Chem Phys 17(3):279–284

    Article  CAS  Google Scholar 

  • Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98(2):1585–1598

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi K, Yokota S, Kondo T (2014) Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nord Pulp Res J 29(1):69–76

    Article  CAS  Google Scholar 

  • Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M (2009) Acceleration mechanism in critical nucleation of polymers by epitaxy of nucleating agent. Polym J 41(3):228–236

    Article  CAS  Google Scholar 

  • Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Cur Sci 102(10):1398–1405

    CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4(3):221–232

    Article  CAS  Google Scholar 

  • Yamamoto H, Horii F, Hirai A (1996) In situ crystallization of bacterial cellulose. 2. Influences of different polymeric additives on the formation of celluloses I-alpha and I-beta at the early stage of incubation. Cellulose 3(4):229–242

    Article  CAS  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mat Sci 24(9):3141–3145

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Kondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, G., Kondo, T. Thermodynamic effect on interaction between crystalline phases in size-controlled ACC-bacterial nanocellulose and poly(vinyl alcohol). Cellulose 24, 5495–5503 (2017). https://doi.org/10.1007/s10570-017-1532-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1532-2

Keywords

Navigation